Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Filled cobalt-antimony based skutterudites have proven themselves as very promising thermoelectric materials for generator applications in an intermediate temperature range between 400 and 800 K due to their high figure of merit. Besides the functional thermoelectric properties also the skutterudites’ mechanical properties play an important role to withstand external mechanical and internal thermomechanical loads during operation. Properties of interest are hardness as well as fracture toughness and resistance to fatigue. Carbon nano tubes are well known for their high tensile strength and may therefore be used to increase the mechanical strength of composite materials. Additionally, the thermoelectric properties of the composite material might benefit from the high electrical conductivity of carbon nano tubes and increased phonon scattering at interfaces between matrix and carbon nano tube. A main precondition for benefiting from embedded nano-tubes is to achieve a homogeneous distribution of the CNTs and good adhesion between carbon nano tube and matrix material. In this work we present the influence of the introduction of multi-walled carbon nano tubes on the thermoelectric and mechanical properties of p-type skutterudites Ce(0.14)La(0.06)Co(2)Fe(2)Sb(12). The influence of different carbon nano tube concentrations and preparation routes on the resulting composite material’s thermoelectric, mechanical and microstructural properties is studied. A reduction of electrical and thermal conductivity as well as fracture strength is observed with increasing carbon nano tube content which is attributed to strong agglomeration of the nano tubes. The results underline the pivotal role of a homogeneous distribution of the carbon nano tubes for improving the mechanical properties of skutterudites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2017.13727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!