A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Droplet Behavior in Open Biphasic Microfluidics. | LitMetric

Droplet Behavior in Open Biphasic Microfluidics.

Langmuir

Department of Chemistry , University of Washington, Box 351700 , Seattle , Washington 98195 , United States.

Published: May 2018

Capillary open microsystems are attractive and increasingly used in biotechnology, biology, and diagnostics as they allow simple and reliable control of fluid flows. In contrast to closed microfluidic systems, however, two-phase capillary flows in open microfluidics have remained largely unexplored. In this work, we present the theoretical basis and experimental demonstration of a spontaneous capillary flow (SCF) of two-phase systems in open microchannels. Analytical results show that an immiscible plug placed in an open channel can never stop the SCF of a fluid in a uniform cross-section microchannel. Numerical investigations of the morphologies of immiscible plugs in a capillary flow reveal three different possible behaviors. Finally, the predicted behaviors of the plugs are demonstrated experimentally, revealing an effect of inertial forces on the plug behavior. A model for predicting plug behaviors in SCFs is proposed, enabling the design of open microfluidic droplet-based systems that are simple to fabricate and use. The open-channel approach to droplet-based microfluidics has the potential to enable applications in which each drop can be accessed at any time and any location with simple pipettes or other fluid dispensing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b00380DOI Listing

Publication Analysis

Top Keywords

capillary flow
8
open
6
droplet behavior
4
behavior open
4
open biphasic
4
biphasic microfluidics
4
capillary
4
microfluidics capillary
4
capillary open
4
open microsystems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!