The increasing rate of atmospheric nitrogen (N) deposition has become the focus of research attention. Soil bacterial community plays an important role in soil nutrient cycling. We stimulated N deposition at the Forest Ecosystem of Fujian Normal University and Global Change Research Station in Chenda Town, Sanming City in the Fujian Province of China. We examined the effect of N deposition on the structure and composition of soil bacterial community using 16S rDNA amplification sequencing. The results showed that short-term addition of N had no significant effect on the soil bacterial diversity and composition, but high N treatment significantly affected therelative abundance of individual bacterial species, which increased the abundance of Copiotrophic group and decreased that of the corresponding Oligotrophic group, indicating that changes in soil bacterial nutrient strategies were driven by the availability of nutrients. Enhanced understanding of the responses of soil bacterial community and nutrient distribution pattern to rapid N deposition could improve the prediction ability about the future environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201801.034 | DOI Listing |
Commun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania.
As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.
View Article and Find Full Text PDFNat Commun
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:
Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.
A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!