Purpose: To evaluate the thermal effect of Ho:YAG laser lithotripsy in a standardized in vitro model via real-time temperature measurement.
Methods: Our model comprised a 20 ml test tube simulating the renal pelvis that was immersed in a 37 °C water bath. Two different laser fibers [FlexiFib (15-45 W), RigiFib 1000 (45-100 W), LISA laser products OHG, Katlenburg-Lindau, Germany] were placed in the test tube. An Ho:YAG 100 W laser was used in all experiments (LISA). Each experiment involved 120 s of continuous laser application, and was repeated five times. Different laser settings (high vs. low frequency, high vs. low energy, and long vs. short pulse duration), irrigation rates (0 up to 100 ml/min, realized by several pumps), and human calcium oxalate stone samples were analyzed. Temperature data were acquired by a real-time data logger with thermocouples (PICO Technology, Cambridgeshire, UK). Real-time measurements were assessed using MatLab.
Results: Laser application with no irrigation results in a rapid increase in temperature up to ∆28 K, rising to 68 °C at 100 W. Low irrigation rates yield significantly higher temperature outcomes. Higher irrigation rates result immediately in a lower temperature rise. High irrigation rates of 100 ml/min result in a temperature rise of 5 K at the highest laser power setting (100 W).
Conclusions: Ho:YAG laser lithotripsy might be safe provided that there is sufficient irrigation. However, high power and low irrigation resulted in potentially tissue-damaging temperatures. Laser devices should, therefore, always be applied in conjunction with continuous, closely monitored irrigation whenever performing Ho:YAG laser lithotripsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00345-018-2303-x | DOI Listing |
Background: Stone impaction is an obstacle to successful laparoscopic common bile duct exploration (LCBDE). This study aims to identify the incidence, operative difficulties and techniques used to disimpact and remove impacted stones during LCBDE.
Methods: Prospectively collected data from a large series of LCBDE.
BMC Anesthesiol
January 2025
Department of Anesthesiology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215124, China.
Background: Intravenous anesthesia with high-flow nasal cannula (HFNC) has been reported to benefit oxygen reserves and enhance postoperative recovery in surgeries requiring low neuromuscular blockade. This study investigated whether HFNC improves recovery quality in elderly undergoing ureteroscopic holmium laser lithotripsy (UHLL).
Methods: We enrolled 106 elderly patients undergoing UHLL, with 96 patients (48 per group) included in the final analysis.
BMC Urol
December 2024
Department of Urology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
Background: Managing lower pole renal stones presents clinical challenges influenced by various factors such as stone size, location, and density. This study aims to assess the efficacy, safety, and stone-free rates of Flexible Ureteroscopy (FURS), Extracorporeal Shock Wave Lithotripsy (ESWL), and Mini Percutaneous Nephrolithotomy (Mini PCNL) for treating lower pole renal hard stones (< 2 cm).
Methods: A prospective single-centre comparative study was conducted on 414 adult patients with primary lower pole renal hard stones.
Int J Surg
December 2024
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Purpose: To evaluate the effectiveness and safety of an upgraded integrated vacuum suction catheter in semi-rigid ureteroscopic laser lithotripsy (VC-URSL) compared to traditional methods for treating impacted upper ureteral stones.
Patients And Methods: This prospective, randomized controlled trial was conducted from September 2022 to March 2024 at a single center, enrolling 95 patients aged 18 to 70 years with a single radiopaque impacted upper ureteral stone. Participants were randomized into two groups: the VC-URSL group used an integrated vacuum suction catheter featuring a stainless steel stabilizing tube and a narrowed distal end to prevent obstruction, while the T-URSL group underwent standard ureteroscopic lithotripsy without vacuum assistance.
Urology
December 2024
Division of Urology, Department of Surgery, Ramathibodi Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand.
Objectives: To investigate the effectiveness of different holmium:yttrium-aluminum-garnet (Ho:YAG) laser modes for lithotripsy in the "dusting era" and identify the optimal laser mode for producing stone fragments measuring ≤0.5 mm.
Methods: We used plaster of Paris-made artificial stones crushed into 2-3 mm pieces, weighing 1 g in total.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!