The human protozoan pathogens possess the essential metalloenzyme arginase (Arg) which catalyses the catabolism of l-arginine to l-ornithine and urea. This being the first committed step in polyamine biosynthesis is a potential drug target for protozoan diseases. In pathogenic organisms, arginase plays a crucial role in depleting host l-arginine, a substrate for nitric oxide synthase (NOS) that participates in protective immunity, thereby evading host immune response. In this study, the metal binding spectrum of EhArg has been determined. This study focuses on the biochemical and biophysical characterization of arginase from Entamoeba histolytica (EhArg), majorly characterizing the bivalent metal selectivity and metal binding kinetics of purified EhArg using Surface Plasmon Resonance and inductively coupled plasma mass spectroscopy. Investigation of the active site chemistry and total metal content using molecular docking and ICP-MS unraveled the fact that two Mn2+ ions are required for the enzyme to be fully functional. However, chelating loosely bound Mn2+ and replacing it with a variety of bivalent metal ions including Mg2+, Zn2+, Ni2+, Hg2+, Cu2+, Co2+, Ca2+ and Cd2+ retains its enzymatic activity. Further, the role of nine bivalent ions in the activation of EhArg was studied thermodynamically and biochemically. Phylogenetic and sequence analysis and oligomerization studies of EhArg show that unlike other eukaryotic arginases, EhArg exists in monomeric and dimeric form in solution and shows the highest similarity with bacterial arginase. This study unveiled interesting facts about EhArg that the enzyme has evolved to utilize available metal ion cofactors and survive the inhospitable environment within the host.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8mt00002fDOI Listing

Publication Analysis

Top Keywords

metal binding
12
biochemical biophysical
8
binding spectrum
8
arginase entamoeba
8
entamoeba histolytica
8
bivalent metal
8
metal
7
eharg
7
arginase
5
biophysical insights
4

Similar Publications

Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.

Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Background: Imbalanced Fe levels can lead to oxidative stress and initiate ferroptosis, an Fe-dependent cell death that involves lipid peroxidation and can lead to neuron cell loss in neurodegenerative diseases including Alzheimer's disease (AD). While the Fe/Fe ratio has been identified as the primary determining factor for lipid peroxidation, the role of Fe redox equilibrium and dynamic in AD is not well understood, due to limited tools for visualizing Fe and Fe simultaneously. To overcome this limitation, we recently reported DNAzyme-based sensors for simultaneous imaging of Fe and Fe.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.

Background: A better understanding of the molecular process that drive Alzheimer's disease(AD) are required to develop effective biomarkers and therapies. This includes determining how essential elements like Fe, Cu and Zn are involved in the disease. In the literature there is debate over the role of iron in AD and there are reports of increased, decreased and unchanged levels of Fe in AD brain.

View Article and Find Full Text PDF

Background: Mounting evidence suggests that acute and past exposure to the environmental toxicant lead (Pb) results in longitudinal decline in cognitive function and brain atrophy. In animals, chronic Pb exposure can increase brain Aβ deposition. However, it remains unclear how Pb induces different natures of amyloid depositions and underlying mechanisms to contribute to the pathogenesis of AD and related dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!