Dopant driven tuning of the hydrogen oxidation mechanism at the pore/nickel/zirconia triple phase boundary.

Phys Chem Chem Phys

Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259-SE-3 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.

Published: May 2018

The effects of cation dopants in zirconia on the H2 oxidation mechanism at the pore/nickel/zirconia triple phase boundary (TPB) were theoretically examined. Y, Sc, Al, Ce, and Ca were considered as dopants, and on-boundary, O-migration, and H-migration reaction mechanisms were examined. Based on density functional theory calculations, Y as a dopant favored the on-boundary mechanism with water molecule formation within the immediate proximity of the TPB. The corresponding rate-limiting step is H transfer from the nickel surface to the boundary. In contrast, the on-boundary mechanism is not completed with the Al-, Sc-, and Ca-doped systems, due to the dissociation of water molecules at the boundary. In the Al-doped system, the O-migration mechanism is the major reaction pathway due to a low barrier for the rate-limiting step that corresponds to O transfer from zirconia to the nickel surface. The H-migration mechanism, which implies water molecule formation on the zirconia surface at a position distant from the boundary, should dominate at the Sc-, Ca-, and Ce-doped TPBs, with the lowest activation barrier at the Sc-doped TPB. The reasons for the switching of the reaction mechanisms depending on the dopant species are analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp08572aDOI Listing

Publication Analysis

Top Keywords

oxidation mechanism
8
mechanism pore/nickel/zirconia
8
pore/nickel/zirconia triple
8
triple phase
8
phase boundary
8
reaction mechanisms
8
on-boundary mechanism
8
water molecule
8
molecule formation
8
rate-limiting step
8

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research.

Int J Surg

January 2025

Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.

Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!