Fluorescence confocal microscopy has become increasingly more important in neuroscience due to its applications in image-based screening and profiling of neurons. Multispectral confocal imaging is useful to simultaneously probe for distribution of multiple analytes over networks of neurons. However, current automated image analysis algorithms are not designed to extract single-neuron arbors in images where neurons are not separated, hampering the ability map fluorescence signals at the single cell level. To overcome this limitation, we introduce NeuroTreeTracer - a novel image processing framework aimed at automatically extracting and sorting single-neuron traces in fluorescent images of multicellular neuronal networks. This method applies directional multiscale filters for automated segmentation of neurons and soma detection, and includes a novel tracing routine that sorts neuronal trees in the image by resolving network connectivity even when neurites appear to intersect. By extracting each neuronal tree, NeuroTreetracer enables to automatically quantify the spatial distribution of analytes of interest in the subcellular compartments of individual neurons. This software is released open-source and freely available with the goal to facilitate applications in neuron screening and profiling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915526PMC
http://dx.doi.org/10.1038/s41598-018-24753-wDOI Listing

Publication Analysis

Top Keywords

neuronal trees
8
fluorescent images
8
neuronal networks
8
screening profiling
8
neuronal
5
neurons
5
automated sorting
4
sorting neuronal
4
trees fluorescent
4
images neuronal
4

Similar Publications

African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated.

View Article and Find Full Text PDF

Objective: To construct a non-invasive pre-hospital screening model and early based on artificial intelligence algorithms to provide the severity of stroke in patients, provide screening, guidance and early warning for stroke patients and their families, and provide data support for clinical decision-making.

Methods: A retrospective study was conducted. The clinical information of stroke patients (n = 53 793) were extracted from the Yidu cloud big data server system of the Second Affiliated Hospital of Dalian Medical University from January 1, 2001 to July 31, 2023.

View Article and Find Full Text PDF

Voltage-gated sodium channel α-subunits (NaV1.1-1.9) initiate and propagate action potentials in neurons and myocytes.

View Article and Find Full Text PDF

The topographic complexity of the mouse retina has long been underestimated. However, functional gradients exist, which reflect the non-uniform statistics of the visual environment. Horizontal cells are the first visual interneurons that shape the receptive fields of down-stream neurons.

View Article and Find Full Text PDF

Mild focal cooling selectively impacts computations in dendritic trees.

bioRxiv

November 2024

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA, 47907.

Focal cooling is a powerful technique to temporally scale neural dynamics. However, the underlying cellular mechanisms causing this scaling remain unresolved. Here, using targeted focal cooling (with a spatial resolution of 100 micrometers), dual somato-dendritic patch clamp recordings, two-photon calcium imaging, transmitter uncaging, and modeling we reveal that a 5°C drop can enhance synaptic transmission, plasticity, and input-output transformations in the distal apical tuft, but not in the basal dendrites of intrinsically bursting L5 pyramidal neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!