The typical conductive polymer of PEDOT:PSS has recently attracted intensive attention in thermoelectric conversion because of its low cost and low thermal conductivity as well as high electrical conductivity. However, compared to inorganic counterparts, the relatively poor thermoelectric performance of PEDOT:PSS has greatly limited its development and high-tech applications. Here, we report a dramatic enhancement in the thermoelectric performance of PEDOT:PSS by constructing unique composite films with graphene quantum dots (GQDs). At room temperature, the electrical conductivity and Seebeck coefficient of PEDOT:PSS/GQDs reached to 7172 S/m and 14.6 μV/K, respectively, which are 30.99% and 113.2% higher than those of pristine PEDOT:PSS. As a result, the power factor of the optimized PEDOT:PSS/GQDs composite is 550% higher than that of pristine PEDOT:PSS. These significant improvements are attributed to the ordered alignment of PEDOT chains on the surface of GQDs, originated from the strong interfacial interaction between PEDOT:PSS and GQDs and the separation of PEDOT and PSS phases. This study evidently provides a promising route for PEDOT:PSS applied in high-efficiency thermoelectric conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915444PMC
http://dx.doi.org/10.1038/s41598-018-24632-4DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
strong interfacial
8
interfacial interaction
8
thermoelectric conversion
8
electrical conductivity
8
thermoelectric performance
8
performance pedotpss
8
higher pristine
8
pristine pedotpss
8
pedotpss
7

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!