Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing.

Am J Psychiatry

From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami.

Published: September 2018

The accrual and analysis of genomic sequencing data have identified specific genetic variants that are associated with major depressive disorder. Moreover, substantial investigations have been devoted to identifying gene-drug interactions that affect the response to antidepressant medications by modulating their pharmacokinetic or pharmacodynamic properties. Despite these advances, individual responses to antidepressants, as well as the unpredictability of adverse side effects, leave clinicians with an imprecise prescribing strategy that often relies on trial and error. These limitations have spawned several combinatorial pharmacogenetic testing products that are marketed to physicians. Typically, combinatorial pharmacogenetic decision support tools use algorithms to integrate multiple genetic variants and assemble the results into an easily interpretable report to guide prescribing of antidepressants and other psychotropic medications. The authors review the evidence base for several combinatorial pharmacogenetic decision support tools whose potential utility has been evaluated in clinical settings. They find that, at present, there are insufficient data to support the widespread use of combinatorial pharmacogenetic testing in clinical practice, although there are clinical situations in which the technology may be informative, particularly in predicting side effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774046PMC
http://dx.doi.org/10.1176/appi.ajp.2018.17111282DOI Listing

Publication Analysis

Top Keywords

combinatorial pharmacogenetic
16
pharmacogenetic decision
12
decision support
12
support tools
12
genetic variants
8
side effects
8
pharmacogenetic testing
8
pharmacogenetic
5
clinical
4
clinical implementation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!