Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017225 | PMC |
http://dx.doi.org/10.3390/molecules23040969 | DOI Listing |
Small
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi, 21422, China.
Bicontinuous structures are exquisite interpenetrating constructs with an optimal balance between connectivity and surface area. Such unique geometry favors exceptional mechanical properties and efficient inward mass diffusion essential for an absorbent material. Although bicontinuous structures are found across many length scales in nature, synthesizing artificial analogs using biological building blocks remains largely unexplored.
View Article and Find Full Text PDFChemistry
January 2025
Universite Claude Bernard Lyon 1, ICBMS, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622, Villeurbanne, FRANCE.
In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.
View Article and Find Full Text PDFPharmaceutics
November 2024
The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.
Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA.
View Article and Find Full Text PDFNanoscale
January 2025
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
Amphiphilic dendrons or Janus dendrimers self-assembling into nanoscale vesicles offer promising avenues for drug delivery. Triazine-carbosilane dendrons have shown great potential for the intracellular delivery of rose bengal, additionally enhancing its phototoxic activity through non-covalent interactions. Thus, understanding the complexation dynamics between dendrons and photosensitizers is crucial for the development of efficient drug carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!