Development of the spinal cord requires dynamic and tightly controlled expression of numerous transcription factors. Forkhead Box protein J1 (FoxJ1) is a transcription factor involved in ciliogenesis and is specifically expressed in ependymal cells (ECs) in the adult central nervous system. However, using FoxJ1 fate-mapping mouse lines, we observed that FoxJ1 is also transiently expressed by the progenitors of other neural subtypes during development. Moreover, using a knock-in mouse line, we discovered that FoxJ1 is essential for embryonic progenitors to follow a normal developmental trajectory. FoxJ1 loss perturbed embryonic progenitor proliferation and cell fate determination, and resulted in formation of adult ECs having impaired stem cell potential and an inability to respond to spinal cord injury in both male and female animals. Thus, our study uncovers unexpected developmental functions of FoxJ1 in cell fate determination of subsets of neural cells and suggests that FoxJ1 is critical for maintaining the stem cell potential of ECs into adulthood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2018.04.017DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
stem cell
12
cell potential
12
foxj1
8
cell fate
8
fate determination
8
cell
5
foxj1 regulates
4
spinal
4
regulates spinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!