GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion.

Dev Cell

Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1048, USA. Electronic address:

Published: April 2018

The Golgi apparatus is the central hub for protein trafficking and glycosylation in the secretory pathway. However, how the Golgi responds to glucose deprivation is so far unknown. Here, we report that GRASP55, the Golgi stacking protein located in medial- and trans-Golgi cisternae, is O-GlcNAcylated by the O-GlcNAc transferase OGT under growth conditions. Glucose deprivation reduces GRASP55 O-GlcNAcylation. De-O-GlcNAcylated GRASP55 forms puncta outside of the Golgi area, which co-localize with autophagosomes and late endosomes/lysosomes. GRASP55 depletion reduces autophagic flux and results in autophagosome accumulation, while expression of an O-GlcNAcylation-deficient mutant of GRASP55 accelerates autophagic flux. Biochemically, GRASP55 interacts with LC3-II on the autophagosomes and LAMP2 on late endosomes/lysosomes and functions as a bridge between LC3-II and LAMP2 for autophagosome and lysosome fusion; this function is negatively regulated by GRASP55 O-GlcNAcylation. Therefore, GRASP55 senses glucose levels through O-GlcNAcylation and acts as a tether to facilitate autophagosome maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207546PMC
http://dx.doi.org/10.1016/j.devcel.2018.03.023DOI Listing

Publication Analysis

Top Keywords

glucose deprivation
12
grasp55
9
grasp55 senses
8
senses glucose
8
grasp55 o-glcnacylation
8
late endosomes/lysosomes
8
autophagic flux
8
glucose
4
o-glcnacylation
4
deprivation o-glcnacylation
4

Similar Publications

Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.

Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.

View Article and Find Full Text PDF

Background: Sleep deprivation can lead to increased body weight and blood pressure (BP), but the latent effects of partial sleep deprivation related to required night sentry duties within a short-term period on cardiometabolic characteristic changes in military personnel are unclear.

Aim: To investigate the association between night sentry duty frequency in the past 3 months and cardiometabolic characteristics in armed forces personnel.

Methods: A total of 867 armed forces personnel who were aged 18-39 years and did not take any antihypertensive medications in Taiwan in 2020 were included.

View Article and Find Full Text PDF

Unlabelled: Ischemic stroke ranks as the second leading cause of global mortality and disability. Although reperfusion is crucial for salvaging brain tissue, it carries the risk of secondary injuries, such as ferroptosis. Gastrodin, a neuroprotective compound found in Chinese herbal medicine, may regulate this process.

View Article and Find Full Text PDF

Background: This study aimed to explore the impact of the COVID-19 pandemic and resulting changes to diabetes care, especially concerning disease control, the use of (tele)consultation and lessons worth implementing to improve diabetes care, with a specific focus on ethnic minority groups.

Methods: A mixed-methods prospective cohort study among people with type 2 Diabetes Mellitus (T2DM) treated in primary care during the COVID-19 pandemic. A survey was sent regionally, including items related to teleconsultation and amount of contact with the healthcare professional.

View Article and Find Full Text PDF

Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection.

PeerJ

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.

Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!