OBJECTIVE To identify the genetic cause for congenital photosensitivity and hyperbilirubinemia (CPH) in Southdown sheep. ANIMALS 73 Southdown sheep from a CPH research flock and 48 sheep of various breeds from commercial flocks without CPH. PROCEDURES Whole-genome sequencing was performed for a phenotypically normal Southdown sheep heterozygous for CPH. Heterozygous variants within Slco1b3 coding exons were identified, and exons that contained candidate mutations were amplified by PCR assay methods for Sanger sequencing. Blood samples from the other 72 Southdown sheep of the CPH research flock were used to determine plasma direct and indirect bilirubin concentrations. Southdown sheep with a plasma total bilirubin concentration < 0.3 mg/dL were classified as controls, and those with a total bilirubin concentration ≥ 0.3 mg/dL and signs of photosensitivity were classified as mutants. Sanger sequencing was used to determine the Slco1b3 genotype for all sheep. Genotypes were compared between mutants and controls of the CPH research flock and among all sheep. Protein homology was measured across 8 species to detect evolutionary conservation of Slco1b. RESULTS A nonsynonymous mutation at ovine Chr3:193,691,195, which generated a glycine-to-arginine amino acid change within the predicted Slco1b3 protein, was significantly associated with hyperbilirubinemia and predicted to be deleterious. That amino acid was conserved across 7 other mammalian species. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested a nonsynonymous mutation in Slco1b3 causes CPH in Southdown sheep. This disease appears to be similar to Rotor syndrome in humans. Sheep with CPH might be useful animals for Rotor syndrome research.

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.79.5.538DOI Listing

Publication Analysis

Top Keywords

southdown sheep
28
sheep cph
12
cph flock
12
sheep
11
congenital photosensitivity
8
photosensitivity hyperbilirubinemia
8
cph
8
cph southdown
8
flock sheep
8
sanger sequencing
8

Similar Publications

Transcriptomic Study of Different Stages of Development in the Testis of Sheep.

Animals (Basel)

September 2024

Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Numerous genes govern male reproduction, modulating testicular development and spermatogenesis. Our study leveraged RNA-Seq to explore candidate genes and pivotal pathways influencing fecundity in an F1 hybrid of Southdown × Hu sheep testes across four developmental milestones: M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). Histological examination using hematoxylins and eosin staining revealed that the cross-sectional area of the spermatid tubules and the number of supportive cells increased in the other groups, as compared to the M0 group.

View Article and Find Full Text PDF

Hybridization can substantially improve growth performance. This study used metagenomics and metabolome sequencing to examine whether the rumen microbiota and its metabolites contributed to this phenomenon. We selected 48 approximately 3 month-old male ♂Hu × ♀Hu (HH,  = 16), ♂Poll Dorset × ♀Hu (DH,  = 16), and ♂Southdown × ♀Hu (SH,  = 16) lambs having similar body weight.

View Article and Find Full Text PDF

Glucocerebrosidosis (termed Gaucher disease in humans) is a lysosomal storage disease, caused by a deficiency of the enzyme glucocerebrosidase, which results in accumulation of the glycolipid substrate glucocerebroside in the macrophage-monocyte system. Three principal forms are recognized in humans, two being neuronopathic and resulting in neurodegeneration. Only two spontaneously arising cases have been described in domestic animals, one in a dog and the other in a flock of Southdown sheep.

View Article and Find Full Text PDF

Variation in the Exon 3-4 Region of Ovine and Its Effect on Wool Traits.

Animals (Basel)

August 2024

Gene-Marker Laboratory, Faculty of Agricultural and Life Science, Lincoln University, Lincoln 7647, Canterbury, New Zealand.

α-keratins are structural proteins in the cortex of wool fibres and assemble in an organized fashion into keratin intermediate filaments. Variation in these keratin proteins affects the structure and characteristics of wool fibre, making keratin genes ideal candidates for the development of gene markers that describe variations in wool traits. A region of spanning exon 3-4 (including the entire exon 3, intron 3, exon 4 and part of intron 4) was investigated.

View Article and Find Full Text PDF

The aim of this study was to analyze the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid mutton sheep using ASReml software, in order to provide theoretical basis for screening the optimal hybriding combinations and accelerating the breeding process of new breeds of specialized housed-feeding mutton sheep. We selected the wellgrown hybrid Southhu (Southdown × Hu sheep) and Dorhu (Dorset × Hu sheep) sheep as the research objects, constructed weight correction formulae for SH and DH sheep at 60 and 180 days; and used ASReml software to investigate the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid sheep. The results showed that the birth month and birth type were found significant for all traits ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!