We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO silica bilayer film which is chemically decoupled from the substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078382PMC
http://dx.doi.org/10.1021/jacs.8b02905DOI Listing

Publication Analysis

Top Keywords

silica polymorph
8
'zigzag' structure
8
silica 'zigzag'
8
silica
7
two-dimensional 'zigzag'
4
'zigzag' silica
4
polymorph
4
polymorph metal
4
metal support
4
support polymorph
4

Similar Publications

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome.

Clin Immunol

December 2024

Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:

Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.

View Article and Find Full Text PDF

Acceleration of acute lung inflammation by IL-1α released through cell death of alveolar macrophages upon phagocytosis of fine Asian sand dust particles.

Environ Int

December 2024

Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan.

Asian sand dust (ASD), a significant desert sand dust, contains sub-2.5 µm fine particles and adversely affects human health, particularly exacerbating respiratory diseases. Despite this, the intricate physiological responses triggered by inhaled ASD particles remain incompletely understood.

View Article and Find Full Text PDF

Context: Lenalidomide (LEN) is used for the treatment of myeloma blood cancer disease. It has become one of the most efficient drugs to halt this disease. LEN is a low-soluble drug in aqueous media.

View Article and Find Full Text PDF

NanoTube Construct is a web tool for the digital construction of nanotubes based on real and hypothetical single-layer materials including carbon-based materials such as graphene, graphane, graphyne polymorphs, graphidiyene and non-carbon materials such as silicene, germanene, boron nitride, hexagonal bilayer silica, haeckelite silica, molybdene disulfide and tungsten disulfide. Contrary to other available tools, NanoTube Construct has the following features: a) it is not limited to zero thickness materials with specific symmetry, b) it applies energy minimisation to the geometrically constructed Nanotubes to generate realistic ones, c) it derives atomistic descriptors (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!