Spatial and Temporal Distribution of Soil-Applied Neonicotinoids in Citrus Tree Foliage.

J Econ Entomol

Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.

Published: August 2018

Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the insect vector of Candidatus Liberibacter asiaticus (CLas), the presumed cause of huanglongbing (HLB) in citrus (Rutaceae). Soil-applied neonicotinoids are used to manage vector populations and thus reduce the spread of HLB in Florida citrus. Studies were conducted in the greenhouse and field to quantify the spatial and temporal distribution of three neonicotinoid insecticides within individually sampled leaves and throughout the tree canopy. Following field application, no difference in parent material titer was observed between leaf middles versus leaf margins following application of Platinum 75SG or Belay 2.13SC; however, imidacloprid titer was higher in leaf margins than leaf middle following application of Admire Pro. The bottom region of trees contained more imidacloprid than other regions, but was not different from the spherical center region. In the greenhouse, imidacloprid and clothianidin titers peaked 5 wk following application of Admire and Belay, respectively, and thiamethoxam titer peaked 3 wk after application of Platinum. There was no effect of leaf age on uptakes of any insecticides tested. Titers of soil-applied neonicotinoids quantified in the field failed to reach known levels required to kill D. citri. Exposure of D. citri to sublethal dosages of neonicotinoids is of concern for HLB management because of possible failure to protect treated plants from D. citri and selection pressure for development of neonicotinoid resistance. Our results suggest that current soil-based use patterns of neonicotinoids for D. citri management may be suboptimal and require reevaluation to maintain the utility of this chemical class in citrus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075369PMC
http://dx.doi.org/10.1093/jee/toy114DOI Listing

Publication Analysis

Top Keywords

soil-applied neonicotinoids
12
spatial temporal
8
temporal distribution
8
leaf margins
8
application platinum
8
application admire
8
peaked application
8
neonicotinoids
5
citri
5
application
5

Similar Publications

Nearly all maize seed sold in the United States includes a neonicotinoid seed treatment (NST), meant to protect seedlings against early-season insect pests. For key pests, including western corn rootworm (Diabrotica virgifera virgifera LeConte) (D.v.

View Article and Find Full Text PDF

Insecticides are a primary means for suppressing populations of insects that transmit plant pathogens. Application of insecticides for limiting the spread of insect-transmitted plant pathogens is often most effective when applied on an area-wide scale. The glassy-winged sharpshooter is a vector of the bacterial pathogen Xylella fastidiosa, which causes numerous plant diseases including Pierce's disease of grapevine.

View Article and Find Full Text PDF

Insect pollinators are threatened by multiple environmental stressors, including pesticide exposure. Despite being important pollinators, solitary ground-nesting bees are inadequately represented by pesticide risk assessments reliant almost exclusively on honeybee ecotoxicology. Here we evaluate the effects of realistic exposure via squash crops treated with systemic insecticides (Admire-imidacloprid soil application, FarMore FI400-thiamethoxam seed-coating, or Coragen-chlorantraniliprole foliar spray) for a ground-nesting bee species (Hoary squash bee, Eucera pruinosa) in a 3-year semi-field experiment.

View Article and Find Full Text PDF

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter asiaticus (CLas), the presumed cause of Huanglongbing (HLB) in citrus. Management strategies were developed in Florida that used soil-applied neonicotinoids to protect young trees. Despite the implementation of intense management programs, infection spread among the most intensively managed groves.

View Article and Find Full Text PDF

Uptake of soil-applied thiamethoxam in orange and its effect against Asian citrus psyllid in different seasons.

Pest Manag Sci

May 2019

National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China.

Background: Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important pest of citrus worldwide because it transmits the bacteria causing huanglongbing (HLB). We investigated the effects and persistence of two soil application rates of thiamethoxam on ACP populations in two flushing seasons in the field. Thiamethoxam and clothianidin residues in the fruit were detected to evaluate food safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!