Despite a long history of mosquito-borne virus epidemics in the Americas, the impact of the Zika virus (ZIKV) epidemic of 2015-2016 was unexpected. The need for scientifically informed decision-making is driving research to understand the emergence and spread of ZIKV. To support that research, we assembled a data set of key covariates for modeling ZIKV transmission dynamics in Colombia, where ZIKV transmission was widespread and the government made incidence data publically available. On a weekly basis between January 1, 2014 and October 1, 2016 at three administrative levels, we collated spatiotemporal Zika incidence data, nine environmental variables, and demographic data into a single downloadable database. These new datasets and those we identified, processed, and assembled at comparable spatial and temporal resolutions will save future researchers considerable time and effort in performing these data processing steps, enabling them to focus instead on extracting epidemiological insights from this important data set. Similar approaches could prove useful for filling data gaps to enable epidemiological analyses of future disease emergence events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914286 | PMC |
http://dx.doi.org/10.1038/sdata.2018.73 | DOI Listing |
J Chem Theory Comput
January 2025
Preferred Networks, Inc., Tokyo 100-0004, Japan.
Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Seibersdorf Labor GmbH, Seibersdorf, Austria.
The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
Background: Several studies have suggested that lung tissue heterogeneity is associated with overall survival (OS) in lung cancer. However, the quantitative relationship between the two remains unknown. The purpose of this study is to investigate the prognostic value of whole lung-based and tumor-based radiomics for OS in LA-NSCLC treated with definitive radiotherapy.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran.
Background: Currently, there is no agreed-upon data collection tool for comprehensively structured documentation of Iranian traditional medicine (ITM) from the information management perspective. As ITM practice varies significantly from current medicine in diagnosis and treatment approaches, it is not appropriate to use data platforms or information systems developed for current medicine. Consequently, the collected data are non-comparable, reducing the verdicts' generalization.
View Article and Find Full Text PDFSci Data
January 2025
Division of Trauma and Burn Surgery, Children's National Hospital, Washington, DC, 20010, USA.
Proper personal protective equipment (PPE) use is critical to prevent disease transmission to healthcare providers, especially those treating patients with a high infection risk. To address the challenge of monitoring PPE usage in healthcare, computer vision has been evaluated for tracking adherence. Existing datasets for this purpose, however, lack a diversity of PPE and nonadherence classes, represent single not multiple providers, and do not depict dynamic provider movement during patient care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!