Background: Phytopathogenic problems caused by the bacterial pathogen Pseudomonas syringae in tomato are becoming more serious due to the emergence of strains resistant to classical pesticides. This has led to research into new formulations with lower environmental problems. One of the most promising alternatives to the use of classical pesticides is the induction of natural plant defences. New formulations based on Cu complexed with heptagluconic acid induce plant innate defences and could be an alternative to classical treatments based on inorganic Cu against bacterial speck. To study the efficacy of this compound in tomato against P. syringae, we tested its systemic effect Applying the treatments via radicular.

Results: Treated plants showed less infection development and lower number of viable bacteria in leaves. We also observed better performance of parameters involved in plant resistance such as the antioxidant response and the accumulation of phenolic compounds.

Conclusion: Results showed that soil drench applications can be highly effective for the prevention and control of bacterial speck in tomato plants, showing a reduction in symptoms of ∼ 50%. Moreover, application of Cu heptagluconate induced accumulation of the plant polyphenols caffeic and chlorogenic acids, and reduced the amount of reactive oxygen species in infected plants. © 2018 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5050DOI Listing

Publication Analysis

Top Keywords

pseudomonas syringae
8
syringae tomato
8
classical pesticides
8
bacterial speck
8
plant
5
elucidating mechanism
4
mechanism action
4
action copper
4
copper heptagluconate
4
heptagluconate plant
4

Similar Publications

Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

is a pathogenic bacterium that poses a significant threat to global agriculture, necessitating a deeper understanding of its ecological dynamics in the context of global warming. This study investigates the current and projected future distribution of , focusing on the climatic factors that influence its spread. To achieve this, we employed Maximum Entropy (MaxEnt) modeling based on Geographic Information Systems (GIS) to analyze species occurrence records alongside relevant climate data.

View Article and Find Full Text PDF

Pseudomonas syringae lytic transglycosylase HrpH interacts with host ubiquitin ligase ATL2 to modulate plant immunity.

Cell Rep

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a gram-negative bacterium that affects various plants, highlighting the challenges in controlling its rapid spread.
  • Several antimicrobial strategies are available, such as chemical agents, biological control, and innovative approaches using secondary metabolites and nanoparticles, with chemical control being the most common yet environmentally concerning.
  • Combining treatments, like bacteriophages and antimicrobial peptides with secondary metabolites, could enhance effectiveness, though cost and toxicity concerns exist, suggesting low-concentration approaches may be the most beneficial.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!