Low concentrations of elements in food can be measured with various techniques, mostly in small samples (mg). These techniques provide only reliable data when the element is distributed homogeneously in the material to be analysed either naturally or after a homogenisation procedure. When this is not the case or homogenisation fails, a technique should be applied that is able to measure in samples up to grams and even kilograms and regardless of the distribution of the element. An adaptation of neutron activation analysis (NAA), called large-sample NAA, has been developed and proven accurate and may be an attractive alternative in food research and mass balance studies. Like standard NAA, large-sample NAA can be used to measure both toxic and trace elements relevant for nutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906554PMC
http://dx.doi.org/10.1017/jns.2018.6DOI Listing

Publication Analysis

Top Keywords

neutron activation
8
activation analysis
8
mass balance
8
large-sample naa
8
large-sample neutron
4
analysis mass
4
balance nutritional
4
nutritional studies
4
studies low
4
low concentrations
4

Similar Publications

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Determination of Site Occupancy in the M-Pd-Zn (M = Cu, Ag, and Au) γ-Brass Phase by CALculation of PHAse Diagrams Modeling and Rietveld Refinement.

Inorg Chem

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.

View Article and Find Full Text PDF

High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.

View Article and Find Full Text PDF

Determination of Westcott g-factors for the assay of non-1/v nuclides using k-NAA.

Appl Radiat Isot

January 2025

Reactor Design Group, IGCAR, Kalpakkam, 603102, India.

This study examines the impact of the Westcott g-factor on the concentration of elements like In, Ir, Re, Yb, Eu and Lu, measured using neutron capture reactions (n,γ), specifically focusing on those reactions, whose thermal neutron capture cross-sections (σ ) deviate from the conventional '1/v' behaviour. These measurements are quantified using k₀-based neutron activation analysis. The Westcott g-factor for the non-1/v nuclides was calculated using the characterized neutron temperature (T) at PFTS irradiation channel of KAMINI reactor.

View Article and Find Full Text PDF

In the Iron Age, the Neo-Assyrian empire (c. 900-600 BC) conquered territory across southwest Asia and established regional capitals along its borders to secure its gains. Governors at these centers oversaw resource extraction and craft production for shipment to the imperial heartland in modern-day northern Iraq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!