Based on available evidence, muscle strengthening and cardiovascular exercises can help maintain function and not adversely affect the progression of disease in patients with ALS. However, this evidence is not sufficiently detailed to recommend a specific exercise prescription. The purpose of this project was to assess clinical outcomes of a combined exercise programme to increase knowledge of rehabilitation in ALS patients. 38 ALS patients were assigned randomly to two groups: one group underwent a specific exercise programme (ALS-EP) based on a moderate aerobic workout and isometric contractions, and the second group followed a standard neuromotor rehabilitation treatment. Objective evaluation consisted of cardiovascular measures, muscle strength and fatigue. Some positive effects of physical activity on ALS patients were found. Among the benefits, an overall improvement of functional independence in all patients, independently of the type of exercise conducted was seen. In addition, improvements in muscle power, oxygen consumption and fatigue were specifically observed in the ALS-EP group, all hallmarks of a training effect for the specific exercises. In conclusion, moderate intensity exercise is beneficial in ALS, helping in avoiding deconditioning and muscle atrophy resulting from progressive inactivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895987 | PMC |
http://dx.doi.org/10.4081/ejtm.2018.7278 | DOI Listing |
Brain Pathol
December 2024
Laboratory of Neurobiology and Molecular Therapeutics, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored.
View Article and Find Full Text PDFJ Neuroinflammation
December 2024
Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS.
View Article and Find Full Text PDFSci Rep
December 2024
Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. More than fifty genes carrying causative or disease-modifying variants have been identified since the 1990s, when the first ALS-associated variant in the gene SOD1 was discovered. The most commonly mutated ALS genes in the European populations include the C9orf72, SOD1, TARDBP and FUS.
View Article and Find Full Text PDFInfect Dis Rep
December 2024
Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India.
Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
Transactive response DNA-binding protein of 43 kDa (TDP-43) is a major component of pathological inclusions in various neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The detection of TDP-43 in biofluids is crucial for the development of diagnostic and prognostic indicators of disease and therapeutic development for TDP-43-related proteinopathies. Despite its potential as a biomarker for numerous neurological disorders, the lack of a sensitive and reproducible TDP-43 assay hinders progress in TDP-43-based therapy development, underscoring the need for an effective and standardized method for accurate quantification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!