The emergence of enzymes through the neofunctionalization of noncatalytic proteins is ultimately responsible for the extraordinary range of biological catalysts observed in nature. Although the evolution of some enzymes from binding proteins can be inferred by homology, we have a limited understanding of the nature of the biochemical and biophysical adaptations along these evolutionary trajectories and the sequence in which they occurred. Here we reconstructed and characterized evolutionary intermediate states linking an ancestral solute-binding protein to the extant enzyme cyclohexadienyl dehydratase. We show how the intrinsic reactivity of a desolvated general acid was harnessed by a series of mutations radiating from the active site, which optimized enzyme-substrate complementarity and transition-state stabilization and minimized sampling of noncatalytic conformations. Our work reveals the molecular evolutionary processes that underlie the emergence of enzymes de novo, which are notably mirrored by recent examples of computational enzyme design and directed evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41589-018-0043-2 | DOI Listing |
J Biol Chem
October 2023
Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland. Electronic address:
Chorismate mutase (CM) and cyclohexadienyl dehydratase (CDT) catalyze two subsequent reactions in the intracellular biosynthesis of l-phenylalanine (Phe). Here, we report the discovery of novel and extremely rare bifunctional fusion enzymes, consisting of fused CM and CDT domains, which are exported from the cytoplasm. Such enzymes were found in only nine bacterial species belonging to non-pathogenic γ- or β-Proteobacteria.
View Article and Find Full Text PDFProtein Sci
December 2022
ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australia.
The emergence of oligomers is common during the evolution and diversification of protein families, yet the selective advantage of oligomerization is often cryptic or unclear. Oligomerization can involve the formation of isologous head-to-head interfaces (e.g.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2021
Department of Molecular, Cellular and Developmental Biology, The Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA. Electronic address:
The evolution of novel enzymes has fueled the diversification of life on earth for billions of years. Insights into events that set the stage for the evolution of a new enzyme can be obtained from ancestral reconstruction and laboratory evolution. Ancestral reconstruction can reveal the emergence of a promiscuous activity in a pre-existing protein and the impact of subsequent mutations that enhance a new activity.
View Article and Find Full Text PDFNat Commun
November 2020
Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.
Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function.
View Article and Find Full Text PDFNat Chem Biol
June 2018
Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
The emergence of enzymes through the neofunctionalization of noncatalytic proteins is ultimately responsible for the extraordinary range of biological catalysts observed in nature. Although the evolution of some enzymes from binding proteins can be inferred by homology, we have a limited understanding of the nature of the biochemical and biophysical adaptations along these evolutionary trajectories and the sequence in which they occurred. Here we reconstructed and characterized evolutionary intermediate states linking an ancestral solute-binding protein to the extant enzyme cyclohexadienyl dehydratase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!