Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves.

Sci Rep

Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.

Published: April 2018

Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-β mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913221PMC
http://dx.doi.org/10.1038/s41598-018-24925-8DOI Listing

Publication Analysis

Top Keywords

cholesterol
9
cholesterol transport
8
cholesterol trafficking
8
endocannabinoids
5
endocannabinoids caenorhabditis
4
caenorhabditis elegans
4
elegans essential
4
essential mobilization
4
mobilization cholesterol
4
cholesterol internal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!