Bone fractures occur in horses following traumatic and non-traumatic (bone overloading) events. They can be difficult to treat due to the need for the horse to bear weight on all legs during the healing period. Regenerative medicine to improve fracture union and recovery could significantly improve horse welfare. Equine induced pluripotent stem cells (iPSCs) have previously been derived. Here we show that equine iPSCs cultured for 21 days in osteogenic induction media on an OsteoAssay surface upregulate the expression of osteoblast associated genes and proteins, including , , , , and We also demonstrate that iPSC-osteoblasts are able to produce a mineralised matrix with both calcium and hydroxyapatite deposition. Alkaline phosphatase activity is also significantly increased during osteoblast differentiation. Although the genetic background of the iPSC donor animal affects the level of differentiation observed after 21 days of differentiation, less variation between lines of iPSCs derived from the same horse was observed. The successful, direct, differentiation of equine iPSCs into osteoblasts may provide a source of cells for future regenerative medicine strategies to improve fracture repair in horses undergoing surgery. iPSC-derived osteoblasts will also provide a potential tool to study equine bone development and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992527 | PMC |
http://dx.doi.org/10.1242/bio.033514 | DOI Listing |
Mol Cancer Ther
January 2025
Albert Einstein College of Medicine, Bronx, NY, United States.
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.
View Article and Find Full Text PDFJ Surg Case Rep
January 2025
Department of Research, Universidad Francisco Marroquín, 13 av, Guatemala City 01011, Guatemala.
A 17-year-old female presented with a mass in the right nasal fossa and eye protrusion. Imaging revealed a large osseous mass originating from the right turbinates, causing exophthalmos without tissue invasion. A partial resection via the Caldwell-Luc approach was performed, but hemodynamic instability halted the procedure, leaving a residual mass.
View Article and Find Full Text PDFJBMR Plus
February 2025
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States.
Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.
View Article and Find Full Text PDFBiofabrication
January 2025
Sun Yat-Sen University, Sun Yat-sen University, Guangzhou, PR China, Guangzhou, 510275, CHINA.
Craniofacial bone defect healing in periodontitis patients with diabetes background has long been difficult due to increased blood glucose levels which cause overproduction of reactive oxygen species (ROS) and a low pH environment. These conditions negatively affect the function of macrophages, worsen inflammation and oxidative stress, and ultimately, hinder osteoblasts' bone repair potential. In this study, we for the first time found that ANXA1 expression in macrophages was reduced in a diabetic periodontitis environment, with the activation of the NLRP3/Caspase-1/GSDMD signaling pathway, and, eventually, increased macrophage pyroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!