AI Article Synopsis

  • Hydroxamate groups are crucial in the biological activity of various natural products, including trichostatin A, which inhibits enzymes by binding zinc(II) ions, and desferrioxamines, which chelate iron using hydroxamate groups.
  • The biosynthesis of desferrioxamines involves a condensation reaction catalyzed by the enzyme DesD, which combines derivatives of hydroxycadaverine.
  • The study identifies the gene responsible for producing the acyl transferase DesC, which modifies hydroxycadaverine with different acyl groups, leading to the variety of desferrioxamines, while also revealing insights about the structure and function of the ferrioxamine B receptor.

Article Abstract

Hydroxamate groups play key roles in the biological function of diverse natural products. Important examples include trichostatin A, which inhibits histone deacetylases via coordination of the active site zinc(II) ion with a hydroxamate group, and the desferrioxamines, which use three hydroxamate groups to chelate ferric iron. Desferrioxamine biosynthesis in species involves the DesD-catalysed condensation of various -acylated derivatives of -hydroxycadaverine with two molecules of -succinyl--hydroxycadaverine to form a range of linear and macrocyclic tris-hydroxamates. However, the mechanism for assembly of the various -acyl--hydroxycadaverine substrates of DesD from -hydroxycadaverine has until now been unclear. Here we show that the gene of encodes the acyl transferase responsible for this process. DesC catalyses the -acylation of -hydroxycadaverine with acetyl, succinyl and myristoyl-CoA, accounting for the diverse array of desferrioxamines produced by The X-ray crystal structure of DesE, the ferrioxamine lipoprotein receptor, in complex with ferrioxamine B (which is derived from two units of -succinyl--hydroxycadaverine and one of -acetyl--hydroxycadaverine) was also determined. This showed that the acetyl group of ferrioxamine B is solvent exposed, suggesting that the corresponding acyl group in longer chain congeners can protrude from the binding pocket, providing insights into their likely function. This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915712PMC
http://dx.doi.org/10.1098/rstb.2017.0068DOI Listing

Publication Analysis

Top Keywords

desferrioxamine biosynthesis
8
acyl transferase
8
hydroxamate groups
8
article discussion
8
discussion meeting
8
meeting issue
8
issue 'frontiers
8
'frontiers epigenetic
8
epigenetic chemical
8
biosynthesis diverse
4

Similar Publications

Deciphering the δ-Lactam Formation and lron-Reducing Activity of Spinactins from .

Org Lett

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

The cyclic structure of non-ribosomal peptides (NRPs) is critical for enhancing their stability and bioactivity, which highlights the importance of exploring NRP cyclization enzymes for natural product discovery. Thioesterases (TEs) are crucial enzymes that catalyze the formation of various lactams, including macrolactams, β-lactams, and γ-lactams; however, their potential to produce other lactam types remains largely unexplored. In this study, we identified spinactin A () and novel derivatives, spinactin B-E (-), from NRRL 18395 and characterized the biosynthetic enzymes involved, particularly a unique TE SncF, responsible for δ-lactam formation.

View Article and Find Full Text PDF

Sex and Gender Differences in Iron Chelation.

Biomedicines

December 2024

Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Orbassano, Italy.

Background/objectives: In the absence of physiological mechanisms to excrete excessive iron, the administration of iron chelation therapy is necessary. Age and hormones have an impact on the absorption, distribution, metabolism, and excretion of the medications used to treat iron excess, resulting in notable sex- and gender-related variances.

Methods: Here, we aimed to review the literature on sex and gender in iron overload assessment and treatment.

View Article and Find Full Text PDF

Is Hemopexin a Nephrotoxin or a Marker of Kidney Injury in Renal Ischemia-Reperfusion?

Biomolecules

November 2024

Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea.

Destabilization of heme proteins is recognized to play a role in acute kidney injury (AKI). Hemopexin (Hpx), known for its role in binding heme, mitigates free heme toxicity. Despite this, the potential adverse effects of Hpx deposition in kidney tissues and its impact on kidney function are not fully understood.

View Article and Find Full Text PDF

Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.

Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.

View Article and Find Full Text PDF

Chronic wounds in diabetic patients experience significant clinical challenges due to compromised healing processes. Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical regulator in the cellular response to hypoxia, enhancing angiogenesis and tissue restoration. Nevertheless, the cellular response to the developed chronic hypoxia within diabetes is impaired, likely due to the destabilization of HIF-1α via degradation by prolyl hydroxylase domain (PHD) enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!