Objectives: Compare incidence of over-scanning in chest CT among six hospitals and impact on effective and organ effective radiation dose.
Methods: Scout images of 600 chest CTs from six hospitals (A-F) were retrospectively reviewed using a radiation dose tracking software (RTS). Optimal scan range was determined and compared to the actual scan range. Incidence of cranial and caudal over-scanning was assessed and changes in total and organ effective dose were calculated. Descriptive statistics, Tukey- and Wilcoxon matched pairs test were applied.
Results: Simultaneous cranial and caudal over-scanning occurred in 29 of 600 scans (A = 0%, B = 1%, C = 12%, D = 3%, E = 11%, F = 2%). Effective radiation dose increased on average by 0.29 mSv (P < 0.001). Cranial over-scanning was observed in 45 of 600 scans (A = 0%, B = 8%, C = 2%, D = 15%, E = 17%, F = 3%) and increased organ effective dose by 0.35 mSv in the thyroid gland (P < 0.001). Caudal over-scanning occurred in 147 of 600 scans (A = 7%, B = 9%, C = 35%, D = 4%, E = 32%, F = 60%) and increased organ effective doses in the upper abdomen by up to 14% (P < 0.001 for all organs).
Conclusions: Substantial differences in the incidence of over-scanning in chest CT exist among different hospitals. These differences result in excessive effective radiation dose and increased individual organ effective doses in patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2018.03.005 | DOI Listing |
Mater Horiz
January 2025
Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
Department of Radiation Medicine and Applied Sciences, UC San Diego Health, La Jolla, California, USA.
Purpose: Daily online adaptive radiotherapy (ART) improves dose metrics for gynecological cancer patients, but the on-treatment process is resource-intensive requiring longer appointments and additional time from the entire adaptive team. To optimize resource allocation, we propose a model to identify high-priority patients.
Methods: For 49 retrospective cervical and endometrial cancer patients, we calculated two initial plans: the treated standard-of-care (Initial) and a reduced margin initial plan (Initial) for adapting with the Ethos treatment planning system.
Drug Des Devel Ther
January 2025
Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, People's Republic of China.
Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
Aim: This study leveraged standard-of-care CT scans of patients receiving unilateral radiotherapy (RT) for early tonsillar cancer to detect volumetric changes in the carotid arteries, and determine whether there is a dose-response relationship.
Methods: Disease-free cancer survivors (>3 months since therapy and age > 18 years) treated with intensity modulated RT for early (T1-2, N0-2b) tonsillar cancer with pre- and post-therapy contrast-enhanced CT scans available were included. Patients treated with definitive surgery, bilateral RT, or additional RT before the post-RT CT scan were excluded.
Int J Biomed Imaging
January 2025
Medical Imaging Sciences Department, College of Health Sciences, Gulf Medical University, Ajman, UAE.
The quality of CT images obtained from hepatocellular carcinoma (HCC) patients is complex, affecting diagnostic accuracy, precision, and radiation dose assessment due to increased exposure risks. The study evaluated image quality qualitatively and quantitatively by comparing quality levels with an effective radiation dose to ensure acceptable quality accuracy. This study retrospectively reviewed 100 known HCC patients (Li-RADS-5) who underwent multidetector computed tomography (MDCT) multiphasic scans for follow-up of their health condition between January and October 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!