Silage review: Animal and human health risks from silage.

J Dairy Sci

Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608.

Published: May 2018

Silage may contain several agents that are potentially hazardous to animal health, the safety of milk or other animal food products, or both. This paper reviews published literature about microbial hazards, plant toxins, and chemical hazards. Microbial hazards include Clostridium botulinum, Bacillus cereus, Listeria monocytogenes, Shiga toxin-producing Escherichia coli, Mycobacterium bovis, and various mold species. High concentrations of C. botulinum in silage have been associated with cattle botulism. A high initial concentration of C. botulinum spores in forage in combination with poor silage fermentation conditions can promote the growth of C. botulinum in silage. The elevated pH level that is generally associated with aerobic deterioration of silage is a major factor influencing concentrations of L. monocytogenes, Shiga toxin-producing E. coli, and molds in silage and may also encourage survival and growth of M. bovis, the bacterium that causes bovine tuberculosis. Soil is a major source of B. cereus spores in silage; growth of this bacterium in silage appears to be limited. Hazards from plant toxins include pyrrolizidine, tropane and tropolone alkaloids, phytoestrogens, prussic acid, and mimosine, compounds that exist naturally in certain plant species that may contaminate forages at harvesting. Another group of toxins belonging to this category are ergot alkaloids, which are produced by endophytic fungal species in forages such as tall fescue grass, sorghum, and ryegrass. Varying effects of ensiling on the degradation of these plant toxins have been reported. Chemical hazards include nitrate, nitrite, and toxic oxide gases of nitrogen produced from nitrate and high levels of butyric acid, biogenic amines, and ammonia. Chemical and microbiological hazards are associated with poorly fermented silages, which can be avoided by using proper silage-making practices and creating conditions that promote a rapid and sufficient reduction of the silage pH and prevent aerobic deterioration.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2017-13836DOI Listing

Publication Analysis

Top Keywords

plant toxins
12
silage
11
microbial hazards
8
hazards plant
8
chemical hazards
8
hazards include
8
monocytogenes shiga
8
shiga toxin-producing
8
botulinum silage
8
conditions promote
8

Similar Publications

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa.

Pathogens

January 2025

Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.

head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple species. In this study, seven strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains were classified into three species complexes: the species complex (FGSC), species complex (FIESC), and species complex (FTSC).

View Article and Find Full Text PDF

Phenolic compounds have antiglycation activity, but the changes occurring during thermal treatment (TT) in these activities are not completely understood. The effects of the extraction conditions of (poly)phenols from fruits, before and after TT, on their antioxidant and antiglycation effects were assessed. (Poly)phenol-enriched extracts (PEEs) from raw and TT (90 °C, 1 h) were extracted using three solvent mixtures (ethanol/water/acetic acid) with increasing water content (0, 24, and 49%) and three solvent-to-solid ratios (5, 10, and 20 mL/g).

View Article and Find Full Text PDF

Re-Examination Characterization and Screening of Stripe Rust Resistance Gene of Wheat Gene Family Based on the Transcriptome in Xinchun 32.

Int J Mol Sci

January 2025

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.

Pathogenesis-related protein-1 (PR1) encodes a water-soluble protein produced in plants after pathogen infection or abiotic stimulation. It plays a crucial role in plant-induced resistance by attacking pathogens, degrading cell wall macromolecules and pathogen toxins, and inhibiting the binding of viral coat proteins to plant receptor molecules. Compared to model plants, the mechanism of action of PR1 in wheat remains underexplored.

View Article and Find Full Text PDF

Ready-to-eat (RTE) foods are the most common sources of transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!