Airborne pathogens are one of the most common avenues leading to poultry diseases. Preventing the avian influenza (AI) virus from entering the chicken hatchery house is critical for reducing the spread and transmission of AI disease. Many studies have investigated the incorporation of antimicrobials into air filters to prevent viruses from entering the indoor environment. N-halamines are one of the most effective antimicrobial agents against a broad spectrum of microorganisms. In this study, 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC, a variety of N-halamine) was coated on nonwoven fabrics to give the fabric antimicrobial activity against the AI virus. Results showed that MC exhibited potent antiviral activity either in suspension or in the air. Higher concentrations of MC completely inactivated AI viruses and disrupted their RNA, preventing them from being detected by the real time reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Coating the fabrics with MC resulted in remarkably reduced presence of AI virus on the MC-treated fabric in a short period of time. Furthermore, aerosolized AI viruses were completely inactivated when they passed through filters coated with the MC compound. In addition, MC is not volatile and does not release any gaseous chlorine. The active chlorine in the MC compound is stable, and the coating procedure is straightforward and inexpensive. Therefore, this study validates a novel approach to reducing airborne pathogens in the poultry production environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2018.03.032 | DOI Listing |
Int J Biol Macromol
January 2025
College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:
Int J Biol Macromol
January 2025
Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing, Zhejiang 312000, China; Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing University, Zhejiang, Shaoxing 312000, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China. Electronic address:
Wearable devices that incorporate flexible pressure sensors have shown great potential for human-machine interaction, speech recognition, health monitoring, and handwriting recognition.However, achieving high sensitivity, durability, wide detection range, and breathability through cost-effective fabrication remains challenging. Through ultrasound-assisted modification and impregnation-drying, dome-structured nonwovens/rGO/PDMS flexible pressure sensors were developed.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany.
Materials (Basel)
December 2024
Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland.
This study explores the fabrication of electret nonwoven structures for high-efficiency air filtration, utilizing the blow spinning technique. In response to the growing need for effective filtration systems, we aimed to develop biodegradable materials capable of capturing fine particulate matter (PM2.5) without compromising environmental sustainability.
View Article and Find Full Text PDFChemosphere
February 2025
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:
Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!