Neuroanatomical Correlates of Impulsive Action in Excoriation (Skin-Picking) Disorder.

J Neuropsychiatry Clin Neurosci

From the Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago (AWB, MDH, SAR, JEG); the Department of Psychiatry, University of Cambridge, United Kingdom (SRC); Cambridge and Peterborough NHS Foundation Trust, Cambridge, United Kingdom (SRC); the Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (BLO); and H. Lundbeck A/S, Valby, Denmark (BLO).

Published: November 2018

Excoriation (skin-picking) disorder (SPD) has similarities to obsessive-compulsive disorder (OCD) and is included within the obsessive-compulsive and related disorders (OCRD) diagnostic class in DSM-5. Separate neuroimaging and neurocognitive studies suggest that people affected by SPD find it difficult to inhibit dominant motor responses due to a failure of "top-down" control mechanisms. No study has examined the neural correlates of SPD in participants with varying degrees of impulsive motor behavior. This study correlated cortical thickness and volumes of selected subcortical structures with stop-signal task performance in participants with SPD (N=15) and in healthy control subjects (N=8). All participants were free from current psychiatric comorbidity, including OCD. In volunteers with SPD, longer stop-signal reaction times were correlated with cortical thinning in the right insula and right-inferior parietal lobe and with increased cortical thickness in the left-lateral occipital lobe, though these findings did not withstand correction for multiple comparisons. There were no significant correlations between cortical thickness in these three structures and stop-signal reaction times in the control group. This study suggests that structural abnormalities in the insular cortex and parietal and occipital regions may play a role in the pathophysiology of SPD. Further neuroimaging research is needed to understand the neurobiology of SPD and its relationship with other putative OCRDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076997PMC
http://dx.doi.org/10.1176/appi.neuropsych.17050090DOI Listing

Publication Analysis

Top Keywords

cortical thickness
12
excoriation skin-picking
8
skin-picking disorder
8
correlated cortical
8
structures stop-signal
8
stop-signal reaction
8
reaction times
8
spd
7
neuroanatomical correlates
4
correlates impulsive
4

Similar Publications

Background: Cranial defects from trauma, surgery, or congenital conditions require precise reconstruction to restore cranial vault integrity. Autogenous calvarial grafts are preferred for their histocompatibility and biomechanical properties, but their success depends on a well-developed diploic space. Although prior studies have described overall skull thickness development, less is known about how diploic thickness changes through adulthood.

View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Role of data-driven regional growth model in shaping brain folding patterns.

Soft Matter

January 2025

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.

View Article and Find Full Text PDF

Background And Purpose: Tinnitus is a condition in which individuals perceive sounds, such as ringing or buzzing, without any external source. Although the exact cause is not fully understood, recent studies have indicated the involvement of nonauditory brain structures, including the limbic system. We aimed to compare the volumes of specific brain structures between patients with tinnitus and controls.

View Article and Find Full Text PDF

Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.

Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!