Following the widespread assumption that a majority of ubiquitous marine microplastic particles originate from land-based sources, recent studies identify rivers as important pathways for microplastic particles (MPP) to the oceans. Yet a detailed understanding of the underlying processes and dominant sources is difficult to obtain with the existing accurate but extremely time-consuming methods available for the identification of MPP. Thus in the presented study, a novel approach applying short-wave infrared imaging spectroscopy for the quick and semi-automated identification of MPP is applied in combination with a multitemporal survey concept. Volume-reduced surface water samples were taken from transects at ten points along a major watercourse running through the South of Berlin, Germany, on six dates. After laboratory treatment, the samples were filtered onto glass fiber filters, scanned with an imaging spectrometer and analyzed by image processing. The presented method allows to count MPP, classify the plastic types and determine particle sizes. At the present stage of development particles larger than 450 μm in diameter can be identified and a visual validation showed that the results are reliable after a subsequent visual final check of certain typical error types. Therefore, the method has the potential to accelerate microplastic identification by complementing FTIR and Raman microspectroscopy. Technical advancements (e.g. new lens) will allow lower detection limits and a higher grade of automatization in the near future. The resulting microplastic concentrations in the water samples are discussed in a spatio-temporal context with respect to the influence (i) of urban areas, (ii) of effluents of three major Berlin wastewater treatment plants discharging into the canal and (iii) of precipitation events. Microplastic concentrations were higher downstream of the urban area and after precipitation. An increase in microplastic concentrations was discernible for the wastewater treatment plant located furthest upstream though not for the other two.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.03.097 | DOI Listing |
Nanomaterials (Basel)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.
View Article and Find Full Text PDFFood Chem
January 2025
Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:
Microplastics (MPs), as a kind of plastic particles with an equal volume size of less than 5 mm, similar to PM2.5 in the air, are causing severe contamination issues in food. Along with the food chain accumulation, they have been confirmed to appear in daily foods and cause serious health risks to the organisms.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Microplastics (MPs) have become pervasive pollutants in terrestrial ecosystems, raising significant ecological risks and human health concerns. Despite growing attention, a comprehensive understanding of their quantification, sources, emissions, transport, degradation, and accumulation in soils remains incomplete. This review synthesizes the current knowledge on the anthropogenic activities contributing to soil MP contamination, both intentional and unintentional behaviors, spanning sectors including agriculture, domestic activities, transportation, construction, and industry.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518, Vaulx-en-Velin, France.
The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!