A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On-line Ham Grading using pattern recognition models based on available data in commercial pig slaughterhouses. | LitMetric

The thickness of the subcutaneous fat in hams is one of the most important factors for the dry-curing process and largely determines its final quality. This parameter is usually measured in slaughterhouses by a manual metrical measure to classify hams. The aim of the present study was to propose an automatic classification method based on data obtained from a carcass automatic classification equipment (AutoFom) and intrinsic data of the pigs (sex, breed, and weight) to simulate the manual classification system. The evaluated classification algorithms were decision tree, support vector machines (SVM), k-nearest neighbour and discriminant analysis. A total of 4000 hams selected by breed and sex were classified as thin (0-10 mm), standard (11-15 mm), semi-fat (16-20 mm) and fat (>20 mm). The most reliable model, with a percentage of success of 73%, was SVM with Gaussian kernel, including all data available. These results suggest that the proposed classification method can be a useful online tool in slaughterhouses to classify hams.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2018.04.011DOI Listing

Publication Analysis

Top Keywords

based data
8
classify hams
8
automatic classification
8
classification method
8
classification
5
on-line ham
4
ham grading
4
grading pattern
4
pattern recognition
4
recognition models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!