A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cadmium Exposure of Female Mice Impairs the Meiotic Maturation of Oocytes and Subsequent Embryonic Development. | LitMetric

AI Article Synopsis

  • * The results indicate that cadmium in drinking water reduces the number of ovulated oocytes and hinders their maturation and embryo development, regardless of potential effects on sperm or the reproductive tract.
  • * The study reveals that cadmium exposure affects mitochondrial function, alters mitotic spindle structure, disrupts actin filaments, and modifies histones, all leading to impaired oocyte development and embryonic viability.

Article Abstract

Cadmium is one major pollutant that is highly toxic to animals and humans. The mechanism of cadmium toxicity on the female reproductive system, particularly oocyte maturation and fertility, remains to be clarified. In this study, we used a mouse model to investigate the effects of cadmium in the drinking water on the meiotic maturation of oocytes and subsequent embryonic development, and the underlying mechanisms associated with the impairment of oocyte maturation such as mitochondrial distribution and histone modifications. Our results show that cadmium exposure decreased the number of ovulated oocytes and impaired oocyte meiotic maturation rate both in vivo and in vitro. The embryonic development after fertilization was also impaired even when the potential hazards of cadmium on the spermatozoa or the genital tract have been excluded by fertilization and embryonic development in culture. Cadmium exposure disrupted meiotic spindle morphology and actin filament, which are responsible for successful chromosome segregation and the polar body extrusion during oocyte maturation and fertilization. ATP contents, which are required for proper meiotic spindle assembly in the oocyte, were decreased, consistent with altered mitochondrial distribution after cadmium exposure. Finally, cadmium exposure affected the levels of H3K9me2 and H4K12ac in the oocyte, which are closely associated with the acquisition of oocyte developmental competence and subsequent embryonic development. In conclusion, cadmium exposure in female mice impaired meiotic maturation of oocytes and subsequent embryonic development by affecting the cytoskeletal organization, mitochondrial function, and histone modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfy089DOI Listing

Publication Analysis

Top Keywords

cadmium exposure
24
embryonic development
24
meiotic maturation
16
subsequent embryonic
16
maturation oocytes
12
oocytes subsequent
12
oocyte maturation
12
cadmium
10
exposure female
8
female mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!