Three experiments were conducted to evaluate the effects of roller mill configuration on growth performance of nursery and finishing pigs, feed preference, and feed mill throughput. The four experimental treatments included corn ground through a roller mill using two, three, four sets of rolls in a fine-grind configuration, or four sets of rolls in a coarse grind configuration. The same roller mill was used for all configurations with the appropriate lower rolls completely open when using the two or three roll pair configurations. Across all studies, mean particle size averaged approximately 540, 435, 270, and 385 µm for the four roller mill configurations, respectively. In Exp. 1, 320 pigs (DNA 400 × 200, initially 10.7 ± 0.27 kg BW) were randomly allotted to treatments with five pigs per pen and 16 pens per treatment in a 21-d growth trial. While there were no evidence of differences observed for ADG or ADFI, pigs fed corn ground using the 4-high coarse configuration had a marginally significant (P = 0.091) improvement in G:F compared with those fed with the 2-high configuration, with others intermediate. In Exp. 2, 90 pigs (PIC 327 × 1050, initially 12.1 ± 0.25 kg BW) were randomly allotted to one of three diet comparisons to determine feed preference between the 2-high, 4-high fine, and 4-high coarse configurations. When given a choice, pigs consumed more (P < 0.05) of the diet containing corn ground through the 2-high roller mill (67%) or 4-high coarse configuration (63%) compared with corn ground through the 4-high fine configuration. In Exp. 3, 922 finishing pigs (PIC TR4 × [FAST Large white × PIC Line 2], initially 40.1 ± 0.36 kg BW) were used in a 97-d experiment with pens of pigs randomly allotted by initial BW to the same experimental treatments used in Exp. 1. There were 21 pigs per pen and 11 pens per treatment. Pigs fed corn ground with the 2-high configuration had greater (P < 0.05) ADG compared with those fed corn ground using the 3-high configuration. Pigs fed corn ground with the 4-high fine configuration had the poorest (P < 0.05) ADG. No differences were observed in G:F. Grinding rate (tonne/h) was greatest (P < 0.05) for the 4-high coarse configuration, while net electricity consumption (kWh/tonne) was lowest (P < 0.05) for the 2-high configuration and greatest for the 4-high fine configuration. In summary, nursery pig G:F tended to be greatest using the 4-high coarse configuration, and finishing pig ADG was maximized using the 2- and 4-high coarse configurations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095261 | PMC |
http://dx.doi.org/10.1093/jas/sky147 | DOI Listing |
Sci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.
View Article and Find Full Text PDFData Brief
February 2025
Institute of Agricultural Sciences, Spanish National Research Council (ICA-CSIC), Serrano 115b, 28006 Madrid, Spain.
Identifying weed species at early-growth stages is critical for precision agriculture. Accurate classification at the species-level enables targeted control measures, significantly reducing pesticide use. This paper presents a dataset of RGB images captured with a Sony ILCE-6300L camera mounted on an unmanned aerial vehicle (UAV) flying at an altitude of 11 m above ground level.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Animal Science, Michigan State University, East Lansing, MI 48824. Electronic address:
The aim of our study was to assess the effects of low or high-starch diets with or without palmitic acid (C16:0) supplementation on the yield of milk, milk components, and energy partitioning of primiparous and multiparous dairy cows between mid and late-lactation. Thirty-two Holstein cows, 12 primiparous ([mean ± SD] 163 ± 33 d in milk) and 20 multiparous ([mean ± SD] 179 ± 37 d in milk), were used in a split-plot Latin square design. Parity was considered the main plot, and within each plot, treatments were then randomly assigned in a replicated 4 × 4 Latin square with 21 d periods and balanced for carryover effects.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.
This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!