Motivation: DNA replication is the key of the genetic information transmission, and it is initiated from the replication origins. Identifying the replication origins is crucial for understanding the mechanism of DNA replication. Although several discriminative computational predictors were proposed to identify DNA replication origins of yeast species, they could only be used to identify very tiny parts (250 or 300 bp) of the replication origins. Besides, none of the existing predictors could successfully capture the 'GC asymmetry bias' of yeast species reported by experimental observations. Hence it would not be surprising why their power is so limited. To grasp the CG asymmetry feature and make the prediction able to cover the entire replication regions of yeast species, we develop a new predictor called 'iRO-3wPseKNC'.
Results: Rigorous cross validations on the benchmark datasets from four yeast species (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis and Pichia pastoris) have indicated that the proposed predictor is really very powerful for predicting the entire DNA duplication origins.
Availability And Implementation: The web-server for the iRO-3wPseKNC predictor is available at http://bioinformatics.hitsz.edu.cn/iRO-3wPseKNC/, by which users can easily get their desired results without the need to go through the mathematical details.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/bty312 | DOI Listing |
Int J Mol Sci
December 2024
Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
Respiratory syncytial virus (RSV) is one of the most prevalent viruses that causes severe acute lower respiratory tract infections (ALRTIs) in the elderly and young children. There is no specific drug to treat RSV, only a broad-spectrum antiviral, ribavirin, which is only used in critical cases. Our research group is investigating antiviral agents of natural origin, such as coumarins and flavonoids, that may help reduce or prevent RSV infection.
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Unit of Scientific Research, Applied College, Qassim University, Buraydah, 52571, Saudi Arabia.
The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.
View Article and Find Full Text PDFVirulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!