Motivation: Digital pathology enables new approaches that expand beyond storage, visualization or analysis of histological samples in digital format. One novel opportunity is 3D histology, where a three-dimensional reconstruction of the sample is formed computationally based on serial tissue sections. This allows examining tissue architecture in 3D, for example, for diagnostic purposes. Importantly, 3D histology enables joint mapping of cellular morphology with spatially resolved omics data in the true 3D context of the tissue at microscopic resolution. Several algorithms have been proposed for the reconstruction task, but a quantitative comparison of their accuracy is lacking.

Results: We developed a benchmarking framework to evaluate the accuracy of several free and commercial 3D reconstruction methods using two whole slide image datasets. The results provide a solid basis for further development and application of 3D histology algorithms and indicate that methods capable of compensating for local tissue deformation are superior to simpler approaches.

Availability And Implementation: Code: https://github.com/BioimageInformaticsTampere/RegBenchmark. Whole slide image datasets: http://urn.fi/urn: nbn: fi: csc-kata20170705131652639702.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129300PMC
http://dx.doi.org/10.1093/bioinformatics/bty210DOI Listing

Publication Analysis

Top Keywords

slide image
8
image datasets
8
tissue
5
comparative analysis
4
analysis tissue
4
reconstruction
4
tissue reconstruction
4
reconstruction algorithms
4
histology
4
algorithms histology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!