The current push for rigor and reproducibility is driven by a desire for confidence in research results. Here, we suggest a framework for a systematic process, based on consensus principles of measurement science, to guide researchers and reviewers in assessing, documenting, and mitigating the sources of uncertainty in a study. All study results have associated ambiguities that are not always clarified by simply establishing reproducibility. By explicitly considering sources of uncertainty, noting aspects of the experimental system that are difficult to characterize quantitatively, and proposing alternative interpretations, the researcher provides information that enhances comparability and reproducibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933802PMC
http://dx.doi.org/10.1371/journal.pbio.2004299DOI Listing

Publication Analysis

Top Keywords

measurement science
8
sources uncertainty
8
science improve
4
improve confidence
4
confidence current
4
current push
4
push rigor
4
rigor reproducibility
4
reproducibility driven
4
driven desire
4

Similar Publications

Ultrasound tomography fundamentally relies on low-frequency data to avoid cycle skipping in full-waveform inversion (FWI). In the absence of sufficiently low-frequency data, we can extrapolate low-frequency content from existing high-frequency signals by using the same approach used in frequency-difference beamforming. This low-frequency content is then used to kickstart FWI and avoid cycle skipping at higher frequencies.

View Article and Find Full Text PDF

Measuring Attractive Interaction between a Self-Electrophoretic Micromotor and a Wall.

Phys Rev Lett

December 2024

School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.

Chemically driven micromotors exhibit a pronounced affinity for nearby surfaces, yet the quantification of this motor-wall interaction strength remains unexplored in experiments. Here, we apply an external force to a self-electrophoretic micromotor which slides along a wall and measures the force necessary to disengage the motor from the wall. Our experiments unveil that the required disengaging force increases with the strength of chemical driving, often surpassing both the motor's effective gravity and its propulsive thrust.

View Article and Find Full Text PDF

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Measurement of CP Violation Observables in D^{+}→K^{-}K^{+}π^{+} Decays.

Phys Rev Lett

December 2024

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

A search for violation of the charge-parity (CP) symmetry in the D^{+}→K^{-}K^{+}π^{+} decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4  fb^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D^{+} and D^{-} phase-space distributions, with instrumental asymmetries subtracted using the D_{s}^{+}→K^{-}K^{+}π^{+} decay as a control channel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!