Activating neurotrophic receptor kinase (NTRK) fusions define certain pediatric mesenchymal tumors, including infantile fibrosarcoma and cellular mesoblastic nephroma. Traditionally, molecular confirmation of these fusions has included either fluorescent in situ hybridization for ETV6 rearrangements or reverse-transcriptase polymerase chain reaction for the classic ETV6-NTRK3 fusion. However, these methods overlook variant NTRK rearrangements, which are increasingly appreciated as recurrent events in a subset of pediatric mesenchymal tumors. New therapeutic agents successfully target these fusions and may prevent morbid surgeries in very young children, making recognition of tumors harboring NTRK rearrangements of increasing importance. We evaluated the performance of immunohistochemical (IHC) staining using pan-Trk and TrkA antibodies in 79 pediatric mesenchymal tumors. Negative controls included pediatric mesenchymal tumors not harboring (n=28) or not expected to harbor (n=22) NTRK fusions. NTRK rearrangements were detected predominantly by DNA-based next-generation sequencing assays, specifically UW OncoPlex and UCSF500 Cancer Gene Panel. Pan-Trk IHC (EPR17341) was 97% sensitive and 98% specific for the presence of an NTRK rearrangement, and TrkA IHC (EP1058Y) was 100% sensitive and 63% specific for the presence of an NTRK rearrangement. Tumors with NTRK1 or NTRK2 rearrangements showed cytoplasmic staining, whereas tumors with NTRK3 rearrangements showed nuclear +/- cytoplasmic staining. We conclude that pan-Trk IHC is a highly sensitive and specific marker for NTRK rearrangements in pediatric mesenchymal tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PAS.0000000000001062 | DOI Listing |
Development
January 2025
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional novel requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production.
View Article and Find Full Text PDFJ Virol
January 2025
Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell.
View Article and Find Full Text PDFDevelopment
January 2025
Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.
View Article and Find Full Text PDFPurpose: In glioblastoma, the therapeutically intractable and resistant phenotypes can be derived from glioma stem cells, which often have different underlying mechanisms from non-stem glioma cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR pathways have been shown as common drivers of glioblastoma. Revealing the inter and intra-cellular heterogeneity within glioma stem cell populations in relations to signaling patterns through these pathways may be key to precision diagnostic and therapeutic targeting of these cells.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Pediatrics, Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, Brazil.
Background: Adrenocortical cancer (ACC) is rare and aggressive, with YAP1 overexpression associated with poor outcomes in pediatric patients. In this study, we investigated the mechanisms by which YAP1 drives ACC progression and explored it as a potential target therapy.
Methods: YAP1 expression and methylation in ACC were analyzed from pediatric and adult cohorts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!