Self-organized stimuli-responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self-organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well-defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201800237 | DOI Listing |
Lipids Health Dis
January 2025
Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei Anhui, 230601, China.
Background: The triglyceride-glucose (TyG) index has been identified as an alternative biomarker for insulin resistance (IR), while residual cholesterol (RC) is a simple, cost-effective, and easily detectable lipid metabolite. However, the associations of these two markers with carotid plaque presence remain unclear. Thus, this study aimed to explore their associations with carotid plaque presence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121, Ferrara, Italy.
In this study an in situ forming gel for curcumin and piperine delivery is investigated as a long-lasting strategy in the local treatment of inflammatory and degenerative joint disease, such as osteoarthritis and rheumatoid arthritis. Particularly glyceryl monooleate, in association with phosphatidylcholine and ethanol, were employed. Different ratios between excipients were tested, with the aim to obtain a liquid form suitable for subcutaneous injection, gaining a semisolid consistency in contact with biological fluids.
View Article and Find Full Text PDFJ Imaging
January 2025
Center for Pattern Recognition and Machine Intelligence, Concordia University, Montreal, QC H3G 1M8, Canada.
This paper is devoted to numerical algorithms based on harmonic transformations with two goals: (1) face boundary formulation by blending techniques based on the known characteristic nodes and (2) some challenging examples of face resembling. The formulation of the face boundary is imperative for face recognition, transformation, and combination. Mapping between the source and target face boundaries with constituent pixels is explored by two approaches: cubic spline interpolation and ordinary differential equation (ODE) using Hermite interpolation.
View Article and Find Full Text PDFDeep eutectic solvents are highly tailorable non-aqueous solvents with potential applications ranging from energy catalysis to cryopreservation. Self-assembled lipid structures are already used in a variety of industries including cosmetics, drug delivery and as microreactors. However, most research into lipid self-assembly has been limited to aqueous solvents.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!