A hierarchical clustering method for dimension reduction in joint analysis of multiple phenotypes.

Genet Epidemiol

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America.

Published: June 2018

Genome-wide association studies (GWAS) have become a very effective research tool to identify genetic variants of underlying various complex diseases. In spite of the success of GWAS in identifying thousands of reproducible associations between genetic variants and complex disease, in general, the association between genetic variants and a single phenotype is usually weak. It is increasingly recognized that joint analysis of multiple phenotypes can be potentially more powerful than the univariate analysis, and can shed new light on underlying biological mechanisms of complex diseases. In this paper, we develop a novel variable reduction method using hierarchical clustering method (HCM) for joint analysis of multiple phenotypes in association studies. The proposed method involves two steps. The first step applies a dimension reduction technique by using a representative phenotype for each cluster of phenotypes. Then, existing methods are used in the second step to test the association between genetic variants and the representative phenotypes rather than the individual phenotypes. We perform extensive simulation studies to compare the powers of multivariate analysis of variance (MANOVA), joint model of multiple phenotypes (MultiPhen), and trait-based association test that uses extended simes procedure (TATES) using HCM with those of without using HCM. Our simulation studies show that using HCM is more powerful than without using HCM in most scenarios. We also illustrate the usefulness of using HCM by analyzing a whole-genome genotyping data from a lung function study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980772PMC
http://dx.doi.org/10.1002/gepi.22124DOI Listing

Publication Analysis

Top Keywords

multiple phenotypes
16
genetic variants
16
joint analysis
12
analysis multiple
12
hierarchical clustering
8
clustering method
8
dimension reduction
8
association studies
8
complex diseases
8
association genetic
8

Similar Publications

The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).

View Article and Find Full Text PDF

Various prognostic scoring systems in myelofibrosis (MF) have been developed to guide clinical decision-making in MF. However, discrepancies between different scoring systems for individual patients remain poorly understood, which can result in conflicting treatment recommendations. Moreover, data regarding there applicability in Asian populations remain scarce.

View Article and Find Full Text PDF

Sterol-Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory-Competent Clones of the Industrial Yeast Saccharomyces cerevisiae.

Microb Biotechnol

January 2025

Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain.

Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μ values ranging from 0.

View Article and Find Full Text PDF

Whole Blood DNA Methylation Analysis Reveals Epigenetic Changes Associated with ARSACS.

Cerebellum

January 2025

Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations.

View Article and Find Full Text PDF

Pourpose: This study aimed to investigate the seroepidemiological status of Toxoplasma gondii (T. gondii) infection in Multiple Sclerosis (MS) patients compared to controls.

Methods: The present study included 98 MS patients and 100 controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!