AI Article Synopsis

  • - An experiment was conducted over 40 days to assess how tanniferous fruit and soybean oil affect lamb performance, meat characteristics, and fatty acid profiles, using twenty creole male lambs in a randomized design with four different dietary treatments.
  • - The study measured the concentration of condensed tannins and found no significant interactions between soybean oil and the fruit, with no differences in daily gain, intake, or feed conversion.
  • - Results indicated that while soybean oil decreased dry matter digestibility, the combination of fruit and soybean oil did not enhance the lambs' performance compared to the control diet.

Article Abstract

To evaluate phenolic compounds and whether the combination of a tanniferous fruit and soybean oil could improve the performance, meat characteristics, and fatty acid (FA) profile in lambs, an experiment was conducted over 40 days with twenty creole male lambs (23.71 ± 3.46 kg). The lambs were allotted in a completely randomised design, with factorial arrangement 2 × 2, with the following dietary treatments: (1) control diet, (2) 2% ground fruit dry matter (DM), (3) 2% soybean oil DM, and (4) 2% fruit plus 2% soybean oil. The concentration of condensed tannins (CT) in was 21.71 g/kg DM. No interactions were detected ( > 0.05) among soybean oil and , and there were no differences in daily gain, intake, and feed conversion. Soybean oil reduced ( < 0.05) DM digestibility (68.05 versus 59.56%). In fat from the (LTL) muscle, only linoleic acid presented differences ( < 0.05) between treatments. The combination of fruit and soybean oil did not improve lamb performance at the included levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841064PMC
http://dx.doi.org/10.1155/2018/9486258DOI Listing

Publication Analysis

Top Keywords

soybean oil
28
fruit soybean
12
lamb performance
8
performance meat
8
meat characteristics
8
oil improve
8
oil
7
soybean
6
fruits soybean
4
oil finishing
4

Similar Publications

This study aimed to investigate the impact of dietary soybean oil and probiotics on goat meat quality, total conjugated linoleic acids (TCLA) concentration, and nutritional quality indicators of goats. Thirty-six male crossbred goats (Anglo-Nubian♂× Thai native♀), weighing 18.3 ± 2.

View Article and Find Full Text PDF

Bacterial levans are biopolymers composed of fructose units linked by β-2,6 glycosidic bonds that are degradable, nontoxic and flexible, representing a green technology with significant applications across various industries. Fermented soybeans are a common source of bacteria-producing polysaccharides. In this study, KKSB4, KKSB6 and KKSB7 isolated from traditionally fermented soybean (Thua-nao), along with strain 5.

View Article and Find Full Text PDF

Soybean oil supplement induces increased approaching behavior to humans and alters serotonin concentrations in horses.

J Equine Vet Sci

January 2025

Department of Horse, Companion, and Wild Animal Science, College of Ecology and Environmental Science, Kyungpook National University, Buksangju-ro 2559, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Buksangju-ro 2559, Sangju, Gyeongsangbuk-do 37224, Republic of Korea. Electronic address:

Enhancement of human-horse interaction is crucial for safety in equine management, as poor relationships between humans and horses can lead to accidents. Serotonin is a neurotransmitter that is highly related to social affinity in animals and several studies have been documented that supplementation of tryptophan, which is a precursor of serotonin, can increase calmness of horses. This study aimed to assess the effect of tryptophan through soybean oil supplementation on serotonin concentrations and the behavior of horses.

View Article and Find Full Text PDF

The objective of this study was to prepare a microcapsule system composed of the inner microenvironment (probiotics), middle oil layer (soybean oil and polyglycerol polyricinoleate) and outer coacervate (whey protein and gum arabic) using double emulsification technique coupled with complex coacervation to encapsulate probiotics, and to evaluate the effect of adding krill oil (KO) to the middle oil layer on microcapsule structure and probiotic stability. The results of Fourier transform infrared spectroscopy and Scanning electron microscopy confirmed that whey protein may capture phospholipids in KO through hydrogen bonds, resulting in the formation of a more compact coacervate. Due to the compact coacervate enhanced the vapor transport barrier and reduced water evaporation during low-temperature dehydration, probiotics encapsulated in KO-supplemented microcapsules revealed less cell damage and a higher survival rate after freeze-drying.

View Article and Find Full Text PDF

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!