A Pyridazine-Based Fluorescent Probe Targeting A Plaques in Alzheimer's Disease.

J Anal Methods Chem

Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea.

Published: February 2018

Accumulation of -amyloid (A) plaques comprising A40 and A42 in the brain is the most significant factor in the pathogenesis of Alzheimer's disease (AD). Thus, the detection of A plaques has increasingly attracted interest in the context of AD diagnosis. In the present study, a fluorescent pyridazine-based dye that can detect and image A plaques was designed and synthesized, and its optical properties in the presence of A aggregates were evaluated. An approximately 34-fold increase in emission intensity was exhibited by the fluorescent probe after binding with A aggregates, for which it showed high affinity (  = 0.35 M). Moreover, the reasonable hydrophobic properties of the probe (log  = 2.94) allow it to penetrate the blood brain barrier (BBB). In addition, the pyridazine-based probe was used in the histological costaining of transgenic mouse (APP/PS1) brain sections to validate the selective binding of the probe to A plaques. The results suggest that the pyridazine-based compound has the potential to serve as a fluorescent probe for the diagnosis of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848141PMC
http://dx.doi.org/10.1155/2018/1651989DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
12
alzheimer's disease
8
probe
6
plaques
5
pyridazine-based
4
pyridazine-based fluorescent
4
probe targeting
4
targeting plaques
4
plaques alzheimer's
4
disease accumulation
4

Similar Publications

Twisted Cucurbit[14]uril-Based Supramolecular Self-Assembly Induces Fluorescence Emission of Dye Molecules for Multi-Channel Cell Imaging.

Chemistry

December 2024

Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, 400042, China.

In this study, a supramolecular fluorescent material was constructed by using double-cavity twisted cucurbit[14]uril (tQ[14]) and positively charged Astrazon Pink FG (APFG) based on the non-covalent host-guest interaction for the first time. The thermodynamic parameters of the APFG@tQ[14] in aqueous solution were determined by isothermal titration calorimetry (ITC), the results indicated that the spontaneous assembly of APFG@tQ[14] is mainly driven by enthalpy. The intramolecular charge transfer (ICT) effect induced the APFG@tQ[14] probe to emit a strong orange-red fluorescence.

View Article and Find Full Text PDF

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

Herein, a novel spectrofluorometric sensor is proposed for the sensitive analysis of two nonfluorescent mucolytic drugs, namely, acetylcysteine (ACT) and carbocisteine (CST), utilizing the newly synthesized 2-[(2-hydroxyethyl)-(2,8,10-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidin-4-yl)-amino]-ethanol as a fluorescence probe (Flu. Probe). This fluorophore exhibits fluorescence emission at 445 nm upon excitation at 275 nm.

View Article and Find Full Text PDF

Preparation of carboxymethyl chitosan-Tb (CMCh-Tb) fluorescent probe: For high-sensitivity Cu detection and mechanism study.

Int J Biol Macromol

January 2025

Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.

Carboxymethyl chitosan (CMCh) is a natural polysaccharide derivative with biodegradability, rich in active amino and carboxyl groups. It can act as a ligand to coordinate with rare earth ions, transferring absorbed energy to the central ion to sensitize its luminescence. In this paper, CMCh-Tb was prepared as a solid fluorescent probe by mixing CMCh solution with Tb.

View Article and Find Full Text PDF

Development of a fluorescent probe based on the cyanine skeleton for the detection of PhSH.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China. Electronic address:

In this study, a cyanine skeleton fluorescent parent core was designed based on the intramolecular charge transfer (ICT) principle, and 2, 4-dinitrofluorobenzene (DNFB) was used as the specific recognition site for phenylthiophene (PhSH). The probe showed a fluorescence transition from colorless to red under 410 nm excitation, which had the characteristics of fast response, high selectivity, low detection limit (55 nM), and the fluorescence intensity showed a positive linear correlation with PhSH concentration in the range of 0-100 μM (R = 0.9921).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!