FGF2 Has Distinct Molecular Functions from GDNF in the Mouse Germline Niche.

Stem Cell Reports

Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan. Electronic address:

Published: June 2018

Both glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells, whereas retinoic acid (RA) induces spermatogonial differentiation. In this study, we investigated the functional differences between FGF2 and GDNF in the germline niche by providing these factors using a drug delivery system in vivo. Although both factors expanded the GFRA1 subset of undifferentiated spermatogonia, the FGF2-expanded subset expressed RARG, which is indispensable for proper differentiation, 1.9-fold more frequently than the GDNF-expanded subset, demonstrating that FGF2 expands a differentiation-prone subset in the testis. Moreover, FGF2 acted on the germline niche to suppress RA metabolism and GDNF production, suggesting that FGF2 modifies germline niche functions to be more appropriate for spermatogonial differentiation. These results suggest that FGF2 contributes to induction of differentiation rather than maintenance of undifferentiated spermatogonia, indicating reconsideration of the role of FGF2 in the germline niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989648PMC
http://dx.doi.org/10.1016/j.stemcr.2018.03.016DOI Listing

Publication Analysis

Top Keywords

germline niche
20
fgf2
8
spermatogonial differentiation
8
undifferentiated spermatogonia
8
germline
5
niche
5
fgf2 distinct
4
distinct molecular
4
molecular functions
4
gdnf
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!