Tissue equivalent collagen-hyaluronic acid-based hydrogels are widely used for cartilage tissue engineering; however, not much importance has been given to investigate how cellular responses are altered with varying concentrations of hyaluronic acid in gels. In this study, different concentrations of hyaluronic acid dialdehyde (HAD) were combined with collagen to fabricate collagen-HAD composite (CH) gels, and the influence of HAD on cell shape, migration, viability, cytoskeletal organization, and gel contraction was examined. The microstructure and the mechanical strength of the composite gels were altered by varying HAD concentrations. Morphology of chondrocytes cultured on CH gels showed a significant increase in their aspect ratio and decrease in number of cell protrusions with increase in concentration of HAD. The organization of the cytoskeleton at the cellular protrusions was vimentin localized at the base, microtubules at the tip, and actin localized throughout the cell body. Changes in HAD concentrations altered hydrogel mechanical strength, cytoskeletal organization, and formation of cellular protrusions, all of which contributed to changes in cell morphology and migration. These changes were more evident in 3D cell-encapsulated gels than chondrocytes cultured over the 2D gels. However, viability of cells and matrix contraction, staining for adhesion protein vinculin, and hyaluronic acid receptor CD44 remained similar in all CH compositions. The changes in cell responses further influenced extracellular matrix deposition during in vitro culture. Cell responses in low HAD gels mimic the cellular behavior in damaged cartilage, whereas those in high HAD gels resembled the behavior in healthy cartilage tissue. Our study illustrates the importance of careful formulations of hydrogel compositions in designing biomimetic matrices that are used as in vitro models to study chondrocyte behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2017.0411 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; School of Basic Medicine, Chengdu University, Chengdu 610106, PR China. Electronic address:
In recent years, quinoa protein (QP) has attracted attention for its balanced amino acids composition, but its limited techno-functional properties continue to pose challenges for its utilization. Non-enzymatic Maillard glycation is considered as a promising strategy to expand the utilization of plant proteins in food processing due to its cost-effectiveness, spontaneous nature, and the lack of need for additives to initiate the reaction. Furthermore, the use of hyaluronic acid (HA) as an ingredient in food products is becoming increasingly accepted and popular.
View Article and Find Full Text PDFRehabilitacion (Madr)
January 2025
Servicio de Medicina Física y Rehabilitación, Hospital Universitario Miguel Servet, Zaragoza, España.
Osteoarthritis is a major health problem due to its high prevalence. It is a very common cause of consultation in both primary care and hospitals, implying a high care burden and health costs. Current treatment recommendations are based on a conservative approach, based mainly on physical exercise and ultimately on prosthetic surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!