Birds Bug on Indirect Plant Defenses to Locate Insect Prey.

J Chem Ecol

Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA.

Published: June 2018

It has long been thought that most birds do not use volatile cues to perceive their environment. Aside from some scavenging birds, this large group of vertebrates was believed to mostly rely on highly developed vision while foraging and there are relatively few studies exploring bird response to volatile organic compounds. In response to insect herbivory, plants release volatile organic compounds to attract parasitoids and predators of the pests. To test if insectivorous birds use herbivore-induced plant volatiles (HIPV), dispensers emitting a synthetic blend of HIPV typically emitted after insect herbivory were deployed in a maize field along with imitation clay caterpillars. Significantly more imitation insects were attacked by birds when located close to dispensers releasing HIPV than close to dispenser with organic solvent only. Seven times more peck marks, an index of avian predation, were counted on caterpillars in the vicinity of the HIPV dispensers than on insects close to control dispensers. This is the first field demonstration that insectivorous birds cue on HIPV to locate prey in agricultural settings. These results support the growing evidence that foraging birds exploit volatile cues. This more accurate understanding of their behavior will be important when implementing pest management program involving insectivorous birds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-018-0962-0DOI Listing

Publication Analysis

Top Keywords

insectivorous birds
12
birds
8
volatile cues
8
volatile organic
8
organic compounds
8
insect herbivory
8
hipv dispensers
8
hipv
5
birds bug
4
bug indirect
4

Similar Publications

Migratory birds benefit from urban environments in a highly anthropized Neotropical region.

PLoS One

January 2025

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".

View Article and Find Full Text PDF

Radio-tracking urban breeding birds: The importance of native vegetation.

Ecol Appl

January 2025

Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary.

As urban areas continue to expand globally, a deeper understanding of the functioning of urban green spaces is crucial for maintaining habitats that effectively support wildlife within our cities. Cities typically harbor a wide variety of nonnative vegetation, providing limited support for insect populations. The resulting scarcity of arthropods has been increasingly linked to adverse effects at higher trophic levels, such as the reduced reproductive success of insectivorous birds in urban environments.

View Article and Find Full Text PDF

Bats play key roles in ecosystem functions and provide services to human populations. There is a need to protect bat populations and to mitigate the risks associated with pathogen spillover. Caves are key habitats for many bat species, which use them as roosting and breeding sites.

View Article and Find Full Text PDF

While the content of subjective (personal) experience is inaccessible to external observers, behavioral proxies can frame the nature of that experience and suggest its cognitive requirements. Directed attention is widely recognized as a feature of animal awareness. This descriptive study used the frequency of gaze shifts in lizards and birds as an indicator of the rate at which the animals change the perceptual segmentation of their ongoing experience.

View Article and Find Full Text PDF

Insect declines are raising alarms regarding cascading effects on ecosystems, especially as many insectivorous bird populations are also declining. Here, we leveraged long-term monitoring datasets across Finland to investigate trophic dynamics between functional groups of moths and birds in forested habitats. We reveal a positive association between the biomass of adult- or egg-overwintering moths and the biomasses of resident and long-distance migrant birds reliant on caterpillars as breeding-season food in the north-boreal zone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!