Screening of some Croatian autochthonous grapevine varieties reveals a multitude of viruses, including novel ones.

Arch Virol

Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA.

Published: August 2018

Next-generation sequencing of total RNA samples from four Croatian autochthonous grapevine varieties revealed the presence of a novel virus in two grapevine accessions. The complete genome sequence of a novel virus, tentatively named "grapevine badnavirus 1" (GBV-1), was reconstructed from a de novo-assembled contig. GBV-1 has a genome of 7,145 nucleotides containing three ORFs with sequence similarity to other badnaviruses. In addition, several other viruses and viroids, including grapevine virus G, grapevine virus K/D, grapevine virus T, grapevine Roditis leaf discoloration-associated virus, grapevine yellow speckle viroids 1 and 2, and hop stunt viroid were detected and identified for the first time in Croatian grapevines in the course of this study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-018-3850-6DOI Listing

Publication Analysis

Top Keywords

virus grapevine
16
grapevine virus
12
croatian autochthonous
8
grapevine
8
autochthonous grapevine
8
grapevine varieties
8
novel virus
8
virus
6
screening croatian
4
varieties reveals
4

Similar Publications

Basic leucine zipper (bZIP) transcription factors serve as crucial regulators in plants' response to abiotic stress; however, its function in grapevine heat tolerance is still largely unknown. Here, we undertook a comprehensive investigation of grape genome, leading to the identification of 65 VvbZIP genes, among which 16 VvbZIPs were significantly induced under heat stress. Overexpression of VvbZIP36 enhanced heat tolerance in grape calli, while virus-induced gene silencing (VIGS) of VvbZIP36 reflected thermal sensitivity.

View Article and Find Full Text PDF

Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.

View Article and Find Full Text PDF

First report of the whole‑genome sequence analysis of Fig badnavirus 2 from China.

Virus Genes

January 2025

College of Agronomy, Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Agricultural University, Urumqi, 830052, China.

A novel plant virus was identified in fig trees exhibiting ring spot symptoms through high-throughput sequencing (HTS). The complete genome sequence was successfully determined using PCR and RT-PCR techniques. The virus features a circular DNA genome of 7233 nucleotides (nt) in length, encompassing four open reading frames (ORFs).

View Article and Find Full Text PDF

Among the cultivated crop species, the economically and culturally important grapevine plays host to the greatest number of distinctly characterized viruses. A critical component of the management and containment of these viral diseases in grapevine is both the identification of infected vines and the characterization of new pathogens. Next-generation high-throughput sequencing technologies, i.

View Article and Find Full Text PDF

Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species , genus , family ), the causal agent of red blotch disease, is transmitted by (Hemiptera: Membracidae) in a circulative, non-propagative mode. To gain new insight into GRBV- interactions, we delved into vertical transmission and documented a lack of transovarial transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!