The study investigated an integrated bioprocessing of raw and by-products from sugarcane and dairy industries for production of non-digestible prebiotic and functional ingredients. The low-priced feedstock, whey, molasses, table sugar, jaggery, etc., were subjected to transglucosylation reactions catalyzed by dextransucrase from Leuconostoc mesenteroides MTCC 10508. HPLC analysis approximated production of about 11-14 g L trisaccharide i.e. 2-α-D-glucopyranosyl-lactose (4-galactosyl-kojibiose) from the feedstock prepared from table sugar, jaggery, cane molasses and liquid whey, containing about 30 g L sucrose and lactose each. The trisaccharide was hydrolysed into the prebiotic disaccharide, kojibiose, by employing recombinant β-galactosidase from Escherichia coli. The enzyme β-galactosidase achieved about 90% conversion of 2-α-D-glucopyranosyl-lactose into kojibiose. The D-fructose generated by catalytic reactions of dextransucrase was targeted for catalytic transformation into rare sugar, D-allulose (or D-psicose), by treating the samples with Smt3-D-psicose 3-epimerase. The catalytic reactions resulted in the conversion of ~ 25% D-fructose to D-allulose. These bioactive compounds are known to exert a plethora of benefits to human health, and therefore, are preferred ingredients for making functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-018-1941-0DOI Listing

Publication Analysis

Top Keywords

raw by-products
8
table sugar
8
sugar jaggery
8
catalytic reactions
8
integrated bio-process
4
bio-process production
4
production functional
4
functional biomolecules
4
biomolecules utilizing
4
utilizing raw
4

Similar Publications

To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Towards fostering a more sustainable food production system in face of the climate change challenge, alternative protein meat-substitute products that are plant-based and free of animal by-products have been gaining attractions from both food manufacturers and consumers. With these so-called plant-based meat analogues (PBMAs) becoming increasingly available at supermarkets, there is very little known about their microbial properties. In this short report, we characterized the bacterial composition of raw plant-based ground meat imitation retail products using 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF

Background: Purple passion fruit (Passiflora edulis f. edulis) is a highly appreciated fruit typically consumed in fresh or processed into various food products. The peel and seeds, which are by-products of fruit processing, are rich in nutrients and bioactive compounds with potential to be valorised into food applications.

View Article and Find Full Text PDF

The concept of sustainable production necessitates the utilization of waste and by-products as raw materials, the implementation of biotechnological processes, and the introduction of automated real-time monitoring for efficient use of resources. One example is the biocatalyzed conversion of the reusable by-product glycerin by acetic acid bacteria to dihydroxyacetone (DHA), which is of great importance to the cosmetic industry. The application of compact spectrometers enables the rapid measurement of samples while simultaneously reducing the consumption of resources and energy.

View Article and Find Full Text PDF

Comparative analysis of different pretreatments and hydrolysis conditions for the generation of taste-related substances in pork liver hydrolyzates.

Food Chem

November 2024

Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address:

Article Synopsis
  • Recent increases in meat production have harmful effects on the environment, highlighting the need for better use of meat by-products.
  • The study focuses on improving enzymatic hydrolysis of pork liver using ultrasound and thermal pretreatments to enhance the production of beneficial bioactive peptides and flavors.
  • Results show that ultrasound treatment significantly boosts the release of umami and taste-related amino acids, along with increasing antioxidant activity in pork liver hydrolyzates, suggesting its potential as a functional ingredient.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!