Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system.

Ultrason Sonochem

Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Published: June 2018

Galactooligosaccharides (GOS), recognised prebiotic, can be industrially produced from lactose and commercial β-galactosidase (β-gal) from Kluyveromyces lactis. Residual lactose and glucose limit GOS applications. To handle this problem, a multienzymatic system, with β-gal and glucose oxidase (Gox), was proposed to reduce glucose content in reaction media through its oxidation to gluconic acid (GA). Besides, ultrasound (US) probe effect over the multienzymatic system to produce GOS and GA has been evaluated. A production around 40% of GOS was found in all treatments after the first hour of reaction. However, glucose consumption and GA production was significantly higher (P < 0.05) for sequential reaction assisted by US, obtaining the best production of GOS (49%) and GA (28%) after 2 h of reaction. The conformational and residual activity changes of enzymes under US conditions were also evaluated, Gox being positively affected whereas in β-gal hardly any change was found.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2018.02.022DOI Listing

Publication Analysis

Top Keywords

multienzymatic system
12
gluconic acid
8
impact ultrasound
4
ultrasound galactooligosaccharides
4
galactooligosaccharides gluconic
4
acid production
4
production multienzymatic
4
system galactooligosaccharides
4
gos
4
galactooligosaccharides gos
4

Similar Publications

Human milk oligosaccharides (HMOs) play important roles in the development of infants, which are the third most abundant component in human milk. -Acetyllactosamine (LacNAc) is an important intermediate for the biosynthesis of other HMOs and antigens. Since currently appropriate synthetic methods for large-scale production of LacNAc are not available, it is urgently needed to develop an efficient and cost-effective synthetic pathway for LacNAc preparation.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon-one-unit (C1) feedstocks like formate and formamide are important for producing organic molecules, and they're cleaner alternatives to carbon monoxide from fossil fuels.
  • New methods are emerging to transform carbon dioxide (CO), a greenhouse gas, into these valuable feedstocks, addressing the need for carbon recycling and sustainability.
  • The formylmethanofuran dehydrogenase (FMD) enzyme, found in certain archaea, effectively captures and processes CO without high energy costs, playing a crucial role in the carbon cycle and potentially aiding in renewable energy solutions.
View Article and Find Full Text PDF

Pitaya-Inspired Metal-Organic Framework Nanozyme for Multimodal Imaging-Guided Synergistic Cuproptosis, Nanocatalytic Therapy, and Photothermal Therapy.

Adv Healthc Mater

December 2024

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.

Nature often provides invaluable insights into technological innovation and the construction of nanomaterials. Inspired by the pitaya fruit's strategy of wrapping seeds within its pulp to enhance seed survival, a unique nanocomposite based on metal-organic framework (MOF)-encapsulated CuS nanoparticles (NPs) is developed. This design effectively addresses the challenge of short retention time afforded by CuS NPs for therapeutic and imaging purposes.

View Article and Find Full Text PDF

Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs.

Biomolecules

September 2024

Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain.

Article Synopsis
  • * The study introduces engineered bifunctional fusion enzymes from purine nucleoside phosphorylase I (PNP I) and thymidine phosphorylase (TP), offering a more efficient one-pot synthesis method for nucleosides, as opposed to traditional multi-enzyme systems.
  • * These fusion enzymes operate well at high temperatures (60-90 °C) and specific pH levels (6-8), demonstrating strong stability and successful catalysis for various nucleoside analogs, highlighting their potential in
View Article and Find Full Text PDF

Multienzymatic Orthogonal Activation of DNA Codec Enables Tumor-Specific Imaging of Base Excision Repair Activity.

Anal Chem

October 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Accurate monitoring of base excision repair (BER) activity in cancer cells is critical for advancing the comprehension of DNA repair processes, gaining insights into cancer development, and guiding treatment strategies. However, current assay techniques for assessing BER activity in cancer cells face challenges due to the heterogeneous origins and diversity of BER enzymes. In this work, we present a hihly relible riple loop-intrlocked DNA coec (GATED) that enables precise assessment of BER activity in cancer cells through signal amplification mediated by multienzyme orthogonal activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!