Nitrogen removal through N cycling from sediments in a constructed coastal marsh as assessed by N-isotope dilution.

Mar Pollut Bull

Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Published: April 2018

AI Article Synopsis

  • - The study investigates how salinity affects nitrogen (N) removal in coastal marshes, particularly in Shihwa marsh, Korea, using sediments from different sub-marshes and a closed incubation system with added nitrogen.
  • - Results indicated that sediments with higher salinity had slower nitrogen transformation rates, such as mineralization and denitrification, and that denitrification is primarily influenced by organic carbon levels rather than salinity.
  • - The findings suggest that denitrification is the main process for nitrogen loss in this marsh, estimating its nitrogen removal capacity at about 337 kg N per day, highlighting the relationship between salinity and organic carbon in nitrogen removal efficiency.

Article Abstract

Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added-NH using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2018.02.037DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
8
constructed coastal
8
coastal marsh
8
heterotrophic denitrification
8
marsh
6
denitrification
5
removal cycling
4
cycling sediments
4
sediments constructed
4
marsh assessed
4

Similar Publications

ZnCl-Doped Mesoporous Silica Nanoparticles Prepared via a Simple One-Pot Method for Highly Efficient Nitrate Removal.

Environ Res

December 2024

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand. Electronic address:

Nitrate is a crucial nutrient in the natural nitrogen cycle. However, human activities have elevated nitrate levels in aquatic ecosystems beyond natural thresholds, posing risks to human health and the environment. In this work, ZnCl-doped mesoporous silica nanoparticles (ZnCl@MSN) were synthesized using a one-pot preparation method, leading to a streamlined process with reduced time and energy consumption.

View Article and Find Full Text PDF

Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water.

Water Res

December 2024

Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:

As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.

View Article and Find Full Text PDF

Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.

View Article and Find Full Text PDF

The use of activated sludge models (ASMs) is a common way in the field of wastewater engineering in terms of plant design, development, optimization, and testing of stand-alone treatment plants. The focus of this study was the development of a joint control system (JCS) for a municipal wastewater treatment plant (mWWTP) and an upstream industrial wastewater treatment plant (iWWTP) to create synergies for saving aeration energy. Therefore, an ASM3 + BioP model of the mWWTP was developed to test different scenarios and to find the best set-points for the novel JCS.

View Article and Find Full Text PDF

Differences in the efficiency and mechanisms of different iron-based materials driving synchronous nitrogen and phosphorus removal.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!