Chemical waves in the H + O reaction on a Rh(111) surface alloyed with Ni [Θ < 1.5 monolayers (ML)] have been investigated in the 10 and 10 mbar range at T = 773 K using scanning photoelectron microscopy and x-ray photoelectron spectroscopy as in situ methods. The local intensity variations of the O 1s and the Ni 2p signal display an anticorrelated behavior. The coincidence of a high oxygen signal with a low Ni 2p intensity, which seemingly contradicts the chemical attraction between O and Ni, has been explained with a phase separation of the oxygen covered Rh(111)/Ni surface into a 3D-Ni oxide and into a Ni poor metallic phase. Macroscopic NiO islands (≈1 μm size) formed under reaction conditions have been identified as 2D-Ni oxide. Titration experiments of the oxygen covered Rh(111)/Ni surface with H demonstrated that the reactivity of oxygen is decreased by an order of magnitude through the addition of 0.6 ML Ni. An excitation mechanism is proposed in which the periodic formation and reduction of NiO modulate the catalytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5020381 | DOI Listing |
Phys Rev Lett
December 2024
Department of Materials Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan.
The spin pumping effect in antiferromagnets, which ultimately converts THz waves into a spin current, is the key physical mechanism leading to an essential function which harnesses the THz technology and spintronics. Here, we report thorough experimental investigations of the spin current induced by the antiferromagnetic spin pumping effect in epitaxial α-Fe_{2}O_{3} thin films having two distinct dynamic modes and unambiguously show that both the inter- and intrasublattice spin mixing conductance are equally substantial. Our experimental insight is an important advance for understanding the physics of transduction between the spin current and the staggered magnetization dynamics at THz frequency.
View Article and Find Full Text PDFNat Prod Rep
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Research and Development, ZimVie Dental, Palm Beach Gardens, Florida, USA.
Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.
View Article and Find Full Text PDFMar Drugs
November 2024
Nuclear Research Centre of Birine, Ain Oussera 17200, Algeria.
This study represents the first investigation into the ultrasonic and microwave extraction of bioactive metabolites from (red seaweed) and () (brown seaweed), with a focus on their biological activities. The research compares ultrasound-assisted extraction (UAE) with microwave-assisted extraction (MAE) utilizing a hydromethanolic solvent to evaluate their effects on these seaweeds' bioactive compounds and biological activities. The assessment included a series of antioxidant essays: DPPH, ABTS, phenanthroline, and total antioxidant capacity, followed by enzyme inhibition activities: alpha-amylase and urease.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.
The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!