Cadmium (Cd) is a kind of toxic heavy metal and it can cause damage to organs and tissues. Selenium (Se) can antagonize some metal element toxicity including Cd. The present study was designed to investigate Cd-induced damage to chicken ovary by autophagy and the protective mechanism of Se on Cd-induced damage. Administration of Cd for 12 weeks led to energy metabolism disorder of the chicken ovarian tissues, which resulted in autophagy. In addition, the mRNA expression of glucose-related genes including hexokinase II (HK2), pyruvate kinase (PK), pyruvate dehydrogenase complex (PDHX), and succinate dehydrogenase (SDH) and the activities of ATPase, including Na-K-ATPase, Ca-ATPase, Mg-ATPase, were all downregulated remarkably compared with the control. However, combined with oral administration of Se at 2 mg/kg, the mRNA expression of glucose-related genes and the activities of ATPase increased. The mRNA expression of the autophagy-related genes by Cd treatment, including microtubule-associated protein light chain 3 (LC3), dynein, autophagy-related gene 5 (Atg5), and Beclin 1, was remarkably enhanced, whereas mammalian target of rapamycin (mTOR) was downregulated. However, besides mTOR, their levels displayed a downregulated trend beyond simultaneous Se treatment. The protein expression of autophagy genes was similar to those of mRNA. In conclusion, Cd toxicity affect energy metabolism and induce autophagy, which causes damage to chicken ovary, whereas Se could protect effectively this injury induced by Cd.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-018-1341-yDOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
mrna expression
12
chicken ovarian
8
cd-induced damage
8
damage chicken
8
chicken ovary
8
expression glucose-related
8
glucose-related genes
8
activities atpase
8
autophagy
5

Similar Publications

HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer.

Cells

March 2025

Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico.

Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis.

View Article and Find Full Text PDF

Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.

View Article and Find Full Text PDF

This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using H NMR metabolomics to identify metabolite markers linked to mitochondrial apoptotic pathways. BKA had minimal metabolic effects in RCC cells, suggesting its role in preserving mitochondrial function without significantly altering metabolic pathways. In contrast, STAU induced substantial metabolic reprogramming in RCC cells, disrupting energy production, redox balance, and biosynthesis, thereby triggering apoptotic pathways.

View Article and Find Full Text PDF

Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!