Mitochondrion is important organelle of most eukaryotes and play an important role in participating in various life activities of cells. However, some functions of mitochondria can only be achieved in specific submitochondrial location, the study of submitochondrial locations will help to further understand the biological function of protein, which is a hotspot in proteomics research. In this paper, we propose a new method for protein submitochondrial locations prediction. Firstly, the features of protein sequence are extracted by combining Chou's pseudo-amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM). Then the extracted feature information is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict the protein submitochondrial locations. We obtained the ideal prediction results by jackknife test and compared with other prediction methods. The results indicate that the proposed method is significantly better than the existing research results, which can provide a new method to predict protein locations in other organelles. The source code and all datasets are available at https://github.com/QUST-BSBRC/PseAAC-PsePSSM-WD/ for academic use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2018.04.026 | DOI Listing |
Methods Enzymol
October 2024
School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
The mitochondrial intermembrane space (IMS) is the smallest sub-mitochondrial compartment, containing only 5%-10% of mitochondrial proteins. Despite its size, it exhibits the most diverse array of protein import mechanisms. These are underpinned by several different types of targeting signals that are quite distinct from targeting signals for other mitochondrial sub-compartments.
View Article and Find Full Text PDFmSphere
January 2024
Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location-specific mitochondrial targeting signals and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, targeting signals of multi-pass Tims are less defined. Here, we report the characterization of the targeting signals of Tim17 (TbTim17), an essential component of the most divergent TIM complex.
View Article and Find Full Text PDFUnlabelled: Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location specific mitochondrial targeting signals (MTSs) and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, MTSs of multi-pass Tims are less defined. Here we report the characterization of the MTSs of Tim17 (TbTim17), an essential component of the most divergent TIM complex.
View Article and Find Full Text PDFJ Neurochem
May 2024
Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMR) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (V) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.
View Article and Find Full Text PDFJ Mol Biol
June 2022
Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India. Electronic address:
The double-membrane-bound architecture of mitochondria, essential for ATP production, sub-divides the organelle into inter-membrane space (IMS) and matrix. IMS and matrix possess contrasting oxido-reductive environments and discrete protein quality control (PQC) machineries resulting inherent differences in their protein folding environments. To understand the nature of stress response elicited by equivalent proteotoxic stress to these sub-mitochondrial compartments, we took misfolding and aggregation-prone stressor proteins and fused it to well described signal sequences to specifically target and impart stress to yeast mitochondrial IMS or matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!