Control in dormancy or eradication of cancer stem cells: Mathematical modeling and stability issues.

J Theor Biol

Sorbonne Université, GRC n7, Groupe de Recherche Clinique sur les Myéloproliferations Aiguës et Chroniques, AP-HP, Hôpital Saint-Antoine, Paris F-75012, France. Electronic address:

Published: July 2018

Objective: Modeling and analysis of cell population dynamics enhance our understanding of cancer. Here we introduce and explore a new model that may apply to many tissues.

Analyses: An age-structured model describing coexistence between mutated and ordinary stem cells is developed and explored. The model is transformed into a nonlinear time-delay system governing the dynamics of healthy cells, coupled to a nonlinear differential-difference system describing dynamics of unhealthy cells. Its main features are highlighted and an advanced stability analysis of several steady states is performed, through specific Lyapunov-like functionals for descriptor-type systems.

Results: We propose a biologically based model endowed with rich dynamics. It incorporates a new parameter representing immunoediting processes, including the case where proliferation of cancer cells is locally kept under check by the immune cells. It also considers the overproliferation of cancer stem cells, modeled as a subpopulation of mutated cells that is constantly active in cell division. The analysis that we perform here reveals the conditions of existence of several steady states, including the case of cancer dormancy, in the coupled model of interest. Our study suggests that cancer dormancy may result from a plastic sensitivity of mutated cells to their shared environment, different from that - fixed - of healthy cells, and this is related to an action (or lack of action) of the immune system. Next, the stability analysis that we perform is essentially oriented towards the determination of sufficient conditions, depending on all the model parameters, that ensure either a regionally (i.e., locally) stable dormancy steady state or eradication of unhealthy cells. Finally, we discuss some biological interpretations, with regards to our findings, in light of current and emerging therapeutics. These final insights are particularly formulated in the paradigmatic case of hematopoiesis and acute leukemia, which is one of the best known malignancies for which it is always hard, in presence of a clinical and histological remission, to decide between cure and dormancy of a tumoral clone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2018.03.038DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cells
11
cancer stem
8
healthy cells
8
unhealthy cells
8
stability analysis
8
steady states
8
including case
8
mutated cells
8
analysis perform
8

Similar Publications

Cellular therapy is a promising treatment option for Peripheral Arterial Disease (PAD). Different cell types can be used to regenerate and repair tissues affected by PAD. Many studies have proposed the use of stem cells, such as mesenchymal stem cells, or even mononuclear cells isolated from peripheral blood or bone marrow, to treat PAD.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.

View Article and Find Full Text PDF

Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!